778 research outputs found

    Relative CC"-Numerical Ranges for Applications in Quantum Control and Quantum Information

    Full text link
    Motivated by applications in quantum information and quantum control, a new type of CC"-numerical range, the relative CC"-numerical range denoted WK(C,A)W_K(C,A), is introduced. It arises upon replacing the unitary group U(N) in the definition of the classical CC"-numerical range by any of its compact and connected subgroups K⊂U(N)K \subset U(N). The geometric properties of the relative CC"-numerical range are analysed in detail. Counterexamples prove its geometry is more intricate than in the classical case: e.g. WK(C,A)W_K(C,A) is neither star-shaped nor simply-connected. Yet, a well-known result on the rotational symmetry of the classical CC"-numerical range extends to WK(C,A)W_K(C,A), as shown by a new approach based on Lie theory. Furthermore, we concentrate on the subgroup SUloc(2n):=SU(2)⊗...⊗SU(2)SU_{\rm loc}(2^n) := SU(2)\otimes ... \otimes SU(2), i.e. the nn-fold tensor product of SU(2), which is of particular interest in applications. In this case, sufficient conditions are derived for WK(C,A)W_{K}(C,A) being a circular disc centered at origin of the complex plane. Finally, the previous results are illustrated in detail for SU(2)⊗SU(2)SU(2) \otimes SU(2).Comment: accompanying paper to math-ph/070103

    The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement

    Full text link
    This paper considers the control landscape of quantum transitions in multi-qubit systems driven by unitary transformations with single-qubit interaction terms. The two-qubit case is fully analyzed to reveal the features of the landscape including the nature of the absolute maximum and minimum, the saddle points and the absence of traps. The results permit calculating the Schmidt state starting from an arbitrary two-qubit state following the local gradient flow. The analysis of multi-qubit systems is more challenging, but the generalized Schmidt states may also be located by following the local gradient flow. Finally, we show the relation between the generalized Schmidt states and the entanglement measure based on the Bures distance
    • …
    corecore