35 research outputs found
Emergence of order from turbulence in an isolated planar superfluid
We study the relaxation dynamics of an isolated zero temperature
quasi-two-dimensional superfluid Bose-Einstein condensate (BEC) that is
imprinted with a spatially random distribution of quantum vortices. Following a
period of vortex annihilation, we find that the remaining vortices
self-organise into two macroscopic coherent `Onsager vortex' clusters that are
stable indefinitely. We demonstrate that this occurs due to a novel physical
mechanism --- the evaporative heating of the vortices --- that results in a
negative temperature phase transition in the vortex degrees of freedom. At the
end of our simulations the system is trapped in a non-thermal state. Our
computational results provide a pathway to observing Onsager vortex states in a
superfluid Bose gas.Comment: 10 pages, 7 figure
Motion of vortices in inhomogeneous Bose-Einstein condensates
We derive a general and exact equation of motion for a quantised vortex in an
inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses
the velocity of a vortex as a sum of local ambient density and phase gradients
in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of
single vortex dynamics in both harmonic and hard-walled disk-shaped traps, and
find excellent agreement in both cases with our analytical prediction. The
simulations reveal that, in a harmonic trap, the main contribution to the
vortex velocity is an induced ambient phase gradient, a finding that
contradicts the commonly quoted result that the local density gradient is the
only relevant effect in this scenario. We use our analytical vortex velocity
formula to derive a point-vortex model that accounts for both density and phase
contributions to the vortex velocity, suitable for use in inhomogeneous
condensates. Although good agreement is obtained between Gross-Pitaevskii and
point-vortex simulations for specific few-vortex configurations, the effects of
nonuniform condensate density are in general highly nontrivial, and are thus
difficult to efficiently and accurately model using a simplified point-vortex
description.Comment: 13 pages, 8 figure
Partial-Transfer Absorption Imaging: A versatile technique for optimal imaging of ultracold gases
Partial-transfer absorption imaging is a tool that enables optimal imaging of
atomic clouds for a wide range of optical depths. In contrast to standard
absorption imaging, the technique can be minimally-destructive and can be used
to obtain multiple successive images of the same sample. The technique involves
transferring a small fraction of the sample from an initial internal atomic
state to an auxiliary state and subsequently imaging that fraction absorptively
on a cycling transition. The atoms remaining in the initial state are
essentially unaffected. We demonstrate the technique, discuss its
applicability, and compare its performance as a minimally-destructive technique
to that of phase-contrast imaging.Comment: 10 pages, 5 figures, submitted to Review of Scientific Instrument
Vortex thermometry for turbulent two-dimensional fluids
We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics
Hydrosomes: femtoliter containers for fluorescence spectroscopy studies
We report on improvements and innovations in the use of hydrosomes to encapsulate and study single molecules. Hydrosomes are optically-trappable aqueous nanodroplets. The droplets are suspended in a fluorocarbon medium that is immiscible with water and has an index of refraction lower than water, so hydrosomes are stable and optically trapped by a focused laser beam (optical tweezers). Using optical tweezers, we hold the hydrosomes within a confocal observation volume and interrogate the encapsulated molecule by fluorescence excitation. This method allows for long observation times of a molecule without the need for surface immobilization or liposome encapsulation. We have developed a new way for creating hydrosomes on demand by inertially launching them into the fluorocarbon matrix using a piezo-activated micropipette. Time-resolved fluorescence anisotropy studies are carried out to characterize the effects of the hydrosome interface boundary on biological molecules and to determine whether molecules encapsulated within hydrosomes diffuse freely throughout the available volume. We measured the fluorescence anisotropy decay of 20mer DNA duplexes, and enhanced green fluorescent protein (GFP). We conclude that the molecules rotate freely inside the nanodroplets and do not stick or aggregate at the boundary
Tunable optical tweezers for wavelength-dependent measurements
Optical trapping forces depend on the difference between the trap wavelength and the extinction
resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should
allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength
for a given application. Here we present an optical tweezer system with wavelength tunability,
for the study of resonance effects. With this system, the optical trap stiffness is measured for single
trapped particles that exhibit either single or multiple extinction resonances. We include discussions
of wavelength-dependent effects, such as changes in temperature, and how to measure them
Hydrosomes: femtoliter containers for fluorescence spectroscopy studies
We report on improvements and innovations in the use of hydrosomes to encapsulate and study single molecules. Hydrosomes are optically-trappable aqueous nanodroplets. The droplets are suspended in a fluorocarbon medium that is immiscible with water and has an index of refraction lower than water, so hydrosomes are stable and optically trapped by a focused laser beam (optical tweezers). Using optical tweezers, we hold the hydrosomes within a confocal observation volume and interrogate the encapsulated molecule by fluorescence excitation. This method allows for long observation times of a molecule without the need for surface immobilization or liposome encapsulation. We have developed a new way for creating hydrosomes on demand by inertially launching them into the fluorocarbon matrix using a piezo-activated micropipette. Time-resolved fluorescence anisotropy studies are carried out to characterize the effects of the hydrosome interface boundary on biological molecules and to determine whether molecules encapsulated within hydrosomes diffuse freely throughout the available volume. We measured the fluorescence anisotropy decay of 20mer DNA duplexes, and enhanced green fluorescent protein (GFP). We conclude that the molecules rotate freely inside the nanodroplets and do not stick or aggregate at the boundary