8 research outputs found

    Novel mutation of the PRNP gene of a clinical CJD case

    Get PDF
    BACKGROUND: Transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative diseases, are thought to be caused by an abnormal isoform of a naturally occurring protein known as cellular prion protein, PrP(C). The abnormal form of prion protein, PrP(Sc )accumulates in the brain of affected individuals. Both isoforms are encoded by the same prion protein gene (PRNP), and the structural changes occur post-translationally. Certain mutations in the PRNP gene result in genetic TSEs or increased susceptibility to TSEs. CASE PRESENTATION: A 70 year old woman was admitted to the hospital with severe confusion and inability to walk. Relatives recognized memory loss, gait and behavioral disturbances over a six month period prior to hospitalization. Neurological examination revealed Creutzfeldt-Jakob disease (CJD) related symptoms such as incontinence, Babinski sign and myoclonus. EEG showed periodic sharp waves typical of sporadic CJD and cerebrospinal fluid analysis (CSF) was positive for the presence of the 14-3-3-protein. As the disease progressed the patient developed akinetic mutism and died in the tenth month after onset of the disease symptoms. Unfortunately, no autopsy material was available. PRNP sequencing showed the occurrence of a point mutation on one allele at codon 193, which is altered from ACC, coding for a threonine, to ATC, encoding an isoleucine (T193I). CONCLUSION: Here we report a novel mutation of the PRNP gene found in an elderly female patient resulting in heterozygosity for isoleucine and threonine at codon 193, in which normally homozygosity for threonine is expected (T193). The patient presented typical clinical symptoms of CJD. EEG findings and the presence of the 14-3-3 protein in the CSF, contributed to CJD diagnosis, allowing the classification of this case as a probable CJD according to the World Health Organization (WHO) accepted criteria

    Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients

    Get PDF
    Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe\u27s disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies

    Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson's disease onset

    No full text
    Parkinson's disease (PD), a common neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and their terminations in the basal ganglia, is thought to be related to genetic and environmental factors. Although the pathophysiology of PD neurodegeneration remains unclear, protein misfolding, mitochondrial abnormalities, glutamate dysfunction and/or oxidative stress have been implicated. In this study, we report that a rare T1492G variant in GLUD2, an X-linked gene encoding a glutamate dehydrogenase (a mitochondrial enzyme central to glutamate metabolism) that is expressed in brain (hGDH2), interacted significantly with age at PD onset in Caucasian populations. Individuals hemizygous for this GLUD2 coding change that results in substitution of Ala for Ser445 in the regulatory domain of hGDH2 developed PD 6–13 years earlier than did subjects with other genotypes in two independent Greek PD groups and one North American PD cohort. However, this effect was not present in female PD patients who were heterozygous for the DNA change. The variant enzyme, obtained by substitution of Ala for Ser445, showed an enhanced basal activity that was resistant to GTP inhibition but markedly sensitive to modification by estrogens. Thus, a gain-of-function rare polymorphism in hGDH2 hastens the onset of PD in hemizygous subjects, probably by damaging nigral cells through enhanced glutamate oxidative dehydrogenation. The lack of effect in female heterozygous PD patients could be related to a modification of the overactive variant enzyme by estrogens
    corecore