9,355 research outputs found

    The Cerium volume collapse: Results from the LDA+DMFT approach

    Full text link
    The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which drives the system towards a thermodynamic instability, i.e., the γ\gamma-to-α\alpha volume collapse, consistent with experiment. The connection of the energetic with the spectral evolution shows that the physical origin of the energy anomaly and, thus, the volume collapse is the appearance of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid growth in the double occupancy.Comment: 4 pages, 3 figure

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games

    Seasat data utilization project

    Get PDF
    During the three months of orbital operations, the satellite returned data from the world's oceans. Dozens of tropical storms, hurricanes and typhoons were observed, and two planned major intensive surface truth experiments were conducted. The utility of the Seasat-A microwave sensors as oceanographic tools was determined. Sensor and geophysical evaluations are discussed, including surface observations, and evaluation summaries of an altimeter, a scatterometer, a scanning multichannel microwave radiometer, a synthetic aperture radar, and a visible and infrared radiometer

    Plaquette operators used in the rigorous study of ground-states of the Periodic Anderson Model in D=2D = 2 dimensions

    Full text link
    The derivation procedure of exact ground-states for the periodic Anderson model (PAM) in restricted regions of the parameter space and D=2 dimensions using plaquette operators is presented in detail. Using this procedure, we are reporting for the first time exact ground-states for PAM in 2D and finite value of the interaction, whose presence do not require the next to nearest neighbor extension terms in the Hamiltonian. In order to do this, a completely new type of plaquette operator is introduced for PAM, based on which a new localized phase is deduced whose physical properties are analyzed in detail. The obtained results provide exact theoretical data which can be used for the understanding of system properties leading to metal-insulator transitions, strongly debated in recent publications in the frame of PAM. In the described case, the lost of the localization character is connected to the break-down of the long-range density-density correlations rather than Kondo physics.Comment: 34 pages, 5 figure

    Using state space differential geometry for nonlinear blind source separation

    Full text link
    Given a time series of multicomponent measurements of an evolving stimulus, nonlinear blind source separation (BSS) seeks to find a "source" time series, comprised of statistically independent combinations of the measured components. In this paper, we seek a source time series with local velocity cross correlations that vanish everywhere in stimulus state space. However, in an earlier paper the local velocity correlation matrix was shown to constitute a metric on state space. Therefore, nonlinear BSS maps onto a problem of differential geometry: given the metric observed in the measurement coordinate system, find another coordinate system in which the metric is diagonal everywhere. We show how to determine if the observed data are separable in this way, and, if they are, we show how to construct the required transformation to the source coordinate system, which is essentially unique except for an unknown rotation that can be found by applying the methods of linear BSS. Thus, the proposed technique solves nonlinear BSS in many situations or, at least, reduces it to linear BSS, without the use of probabilistic, parametric, or iterative procedures. This paper also describes a generalization of this methodology that performs nonlinear independent subspace separation. In every case, the resulting decomposition of the observed data is an intrinsic property of the stimulus' evolution in the sense that it does not depend on the way the observer chooses to view it (e.g., the choice of the observing machine's sensors). In other words, the decomposition is a property of the evolution of the "real" stimulus that is "out there" broadcasting energy to the observer. The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see http://www.geocities.com/dlevin2001/ . New version is identical to original version except for URL in the bylin

    Ear-clipping Based Algorithms of Generating High-quality Polygon Triangulation

    Full text link
    A basic and an improved ear clipping based algorithm for triangulating simple polygons and polygons with holes are presented. In the basic version, the ear with smallest interior angle is always selected to be cut in order to create fewer sliver triangles. To reduce sliver triangles in further, a bound of angle is set to determine whether a newly formed triangle has sharp angles, and edge swapping is accepted when the triangle is sharp. To apply the two algorithms on polygons with holes, "Bridge" edges are created to transform a polygon with holes to a degenerate polygon which can be triangulated by the two algorithms. Applications show that the basic algorithm can avoid creating sliver triangles and obtain better triangulations than the traditional ear clipping algorithm, and the improved algorithm can in further reduce sliver triangles effectively. Both of the algorithms run in O(n2) time and O(n) space.Comment: Proceedings of the 2012 International Conference on Information Technology and Software Engineering Lecture Notes in Electrical Engineering Volume 212, 2013, pp 979-98

    Dynamical Mean-Field Theory and Its Applications to Real Materials

    Full text link
    Dynamical mean-field theory (DMFT) is a non-perturbative technique for the investigation of correlated electron systems. Its combination with the local density approximation (LDA) has recently led to a material-specific computational scheme for the ab initio investigation of correlated electron materials. The set-up of this approach and its application to materials such as (Sr,Ca)VO_3, V_2O_3, and Cerium is discussed. The calculated spectra are compared with the spectroscopically measured electronic excitation spectra. The surprising similarity between the spectra of the single-impurity Anderson model and of correlated bulk materials is also addressed.Comment: 20 pages, 9 figures, invited paper for the JPSJ Special Issue "Kondo Effect - 40 Years after the Discovery"; final version, references adde

    Combining the Hybrid Functional Method with Dynamical Mean-Field Theory

    Full text link
    We present a new method to compute the electronic structure of correlated materials combining the hybrid functional method with the dynamical mean-field theory. As a test example of the method we study cerium sesquioxide, a strongly correlated Mott-band insulator. The hybrid functional part improves the magnitude of the pd-band gap which is underestimated in the standard approximations to density functional theory while the dynamical mean-field theory part splits the 4f-electron spectra into a lower and an upper Hubbard band.Comment: 5 pages, 2 figures, replaced with revised version, published in Europhys. Let
    corecore