15 research outputs found
Computer-assisted polyp matching between optical colonoscopy and CT colonography: a phantom study
Potentially precancerous polyps detected with CT colonography (CTC) need to
be removed subsequently, using an optical colonoscope (OC). Due to large
colonic deformations induced by the colonoscope, even very experienced
colonoscopists find it difficult to pinpoint the exact location of the
colonoscope tip in relation to polyps reported on CTC. This can cause unduly
prolonged OC examinations that are stressful for the patient, colonoscopist and
supporting staff.
We developed a method, based on monocular 3D reconstruction from OC images,
that automatically matches polyps observed in OC with polyps reported on prior
CTC. A matching cost is computed, using rigid point-based registration between
surface point clouds extracted from both modalities. A 3D printed and painted
phantom of a 25 cm long transverse colon segment was used to validate the
method on two medium sized polyps. Results indicate that the matching cost is
smaller at the correct corresponding polyp between OC and CTC: the value is 3.9
times higher at the incorrect polyp, comparing the correct match between polyps
to the incorrect match. Furthermore, we evaluate the matching of the
reconstructed polyp from OC with other colonic endoluminal surface structures
such as haustral folds and show that there is a minimum at the correct polyp
from CTC.
Automated matching between polyps observed at OC and prior CTC would
facilitate the biopsy or removal of true-positive pathology or exclusion of
false-positive CTC findings, and would reduce colonoscopy false-negative
(missed) polyps. Ultimately, such a method might reduce healthcare costs,
patient inconvenience and discomfort.Comment: This paper was presented at the SPIE Medical Imaging 2014 conferenc
Towards a framework for analysis of eye-tracking studies in the three dimensional environment: a study of visual search by experienced readers of endoluminal CT colonography.
Objective: Eye tracking in three dimensions is novel, but established descriptors derived from two-dimensional (2D) studies are not transferable. We aimed to develop metrics suitable for statistical comparison of eye-tracking data obtained from readers of three-dimensional (3D) “virtual” medical imaging, using CT colonography (CTC) as a typical example.
Methods: Ten experienced radiologists were eye tracked while observing eight 3D endoluminal CTC videos. Sub-sequently, we developed metrics that described their visual search patterns based on concepts derived from 2D gaze studies. Statistical methods were developed to allow analysis of the metrics.
Results: Eye tracking was possible for all readers. Visual dwell on the moving region of interest (ROI) was defined as pursuit of the moving object across multiple frames. Using this concept of pursuit, five categories of metrics were defined that allowed characterization of reader gaze behaviour. These were time to first pursuit, identi-fication and assessment time, pursuit duration, ROI size and pursuit frequency. Additional subcategories allowed us to further characterize visual search between readers in the test population.
Conclusion: We propose metrics for the characterization of visual search of 3D moving medical images. These metrics can be used to compare readers’ visual search patterns and provide a reproducible framework for the analysis of gaze tracking in the 3D environment. Advances in knowledge: This article describes a novel set of metrics that can be used to describe gaze behaviour when eye tracking readers during interpretation of 3D medical images. These metrics build on those established for 2D eye tracking and are applicable to increasingly common 3D medical image displays
Recommended from our members
CT colonography: external clinical validation of an algorithm for computer-assisted prone and supine registration
Purpose
To perform external validation of a computer-assisted registration algorithm for prone and supine computed tomographic (CT) colonography and to compare the results with those of an existing centerline method.
Materials and Methods
All contributing centers had institutional review board approval; participants provided informed consent. A validation sample of CT colonographic examinations of 51 patients with 68 polyps (6–55 mm) was selected from a publicly available, HIPAA compliant, anonymized archive. No patients were excluded because of poor preparation or inadequate distension. Corresponding prone and supine polyp coordinates were recorded, and endoluminal surfaces were registered automatically by using a computer algorithm. Two observers independently scored three-dimensional endoluminal polyp registration success. Results were compared with those obtained by using the normalized distance along the colonic centerline (NDACC) method. Pairwise Wilcoxon signed rank tests were used to compare gross registration error and McNemar tests were used to compare polyp conspicuity.
Results
Registration was possible in all 51 patients, and 136 paired polyp coordinates were generated (68 polyps) to test the algorithm. Overall mean three-dimensional polyp registration error (mean ± standard deviation, 19.9 mm ± 20.4) was significantly less than that for the NDACC method (mean, 27.4 mm ± 15.1; P = .001). Accuracy was unaffected by colonic segment (P = .76) or luminal collapse (P = .066). During endoluminal review by two observers (272 matching tasks, 68 polyps, prone to supine and supine to prone coordinates), 223 (82%) polyp matches were visible (120° field of view) compared with just 129 (47%) when the NDACC method was used (P < .001). By using multiplanar visualization, 48 (70%) polyps were visible after scrolling ± 15 mm in any multiplanar axis compared with 16 (24%) for NDACC (P < .001).
Conclusion
Computer-assisted registration is more accurate than the NDACC method for mapping the endoluminal surface and matching the location of polyps in corresponding prone and supine CT colonographic acquisitions
Recommended from our members
Endoluminal surface registration for CT colonography using Haustral Fold Matching
Computed Tomographic (CT) colonography is a technique used for the detection of bowel cancer or potentially precancerous polyps. The procedure is performed routinely with the patient both prone and supine to differentiate fixed colonic pathology from mobile faecal residue. Matching corresponding locations is difficult and time consuming for radiologists due to colonic deformations that occur during patient repositioning.
We propose a novel method to establish correspondence between the two acquisitions automatically. The problem is first simplified by detecting haustral folds using a graph cut method applied to a curvature-based metric applied to a surface mesh generated from segmentation of the colonic lumen. A virtual camera is used to create a set of images that provide a metric for matching pairs of folds between the prone and supine acquisitions. Image patches are generated at the fold positions using depth map renderings of the endoluminal surface and optimised by performing a virtual camera registration over a restricted set of degrees of freedom. The intensity difference between image pairs, along with additional neighbourhood information to enforce geometric constraints over a 2D parameterisation of the 3D space, are used as unary and pair-wise costs respectively, and included in a Markov Random Field (MRF) model to estimate the maximum a-posteriori fold labelling assignment.
The method achieved fold matching accuracy of 96.0% and 96.1% in patient cases with and without local colonic collapse. Moreover, it improved upon an existing surface-based registration algorithm by providing an initialisation. The set of landmark correspondences is used to non-rigidly transform a 2D source image derived from a conformal mapping process on the 3D endoluminal surface mesh. This achieves full surface correspondence between prone and supine views and can be further refined with an intensity based registration showing a statistically significant improvement (p<0.001p<0.001), and decreasing mean error from 11.9mm11.9mm to 6.0mm6.0mm measured at 1743 reference points from 17 CTC datasets
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments
Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests
Small Polyps at Endoluminal CT Colonography Are Often Seen But Ignored by Radiologists
Objective: The objective of our study was to describe the characteristics of polyps viewed but then dismissed incorrectly by radiologists at endoluminal CT colonography (CTC), eye movements during these errors, and features provoking false-positive diagnoses.
Materials and methods: Forty-two radiologists viewed 30 endoluminal CTC videos, each depicting a polyp, while their eye movements were tracked. Half of the videos had computer-assisted detection (CAD), and half did not. Classification errors were defined when proven polyps were seen but dismissed. Eye movements during these errors and during correct polyp identifications were compared with multilevel modeling. Polyps were divided subsequently into “difficult to classify” and “easy to classify” using a classification error threshold of more than 15%. Polyp diameter, height, and subjective conspicuity and the proportion of time viewed were compared between groups.
Results: Eye tracking revealed that 97% of false-negative polyp diagnoses were nonetheless preceded by the reader observing the polyp. The difficult polyps were significantly smaller than the easy polyps (mean diameter, 5.4 vs 8.2 mm, respectively p = 0.014) and were subjectively less conspicuous (median score, 4 vs 2; p = 0.0032). Readers spent proportionally less time viewing difficult polyps than viewing easy polyps (29.0% of the time they were on-screen vs 42.6%, respectively; p = 0.01) regardless of the presence of CAD.
Conclusion: Even small and subjectively inconspicuous polyps attract reader gaze, but they are nonetheless ignored. These errors are made rapidly even with CAD. Efforts to improve reader performance at CTC should focus on decision making rather than detection alone
The effect of computer-aided detection markers on visual search and reader performance during concurrent reading of CT colonography
Objective: We aimed to identify the effect of computer-aided detection (CAD) on visual search and performance in CT Colonography (CTC) of inexperienced and experienced readers.
Methods: Fifteen endoluminal CTC examinations were recorded, each with one polyp, and two videos were generated, one with and one without a CAD mark. Forty-two readers (17 experienced, 25 inexperienced) interpreted the videos during infrared visual search recording. CAD markers and polyps were treated as regions of interest in data processing. This multi-reader, multi-case study was analysed using multilevel modelling.
Results: CAD drew readers’ attention to polyps faster, accelerating identification times: median ‘time to first pursuit’ was 0.48 s (IQR 0.27 to 0.87 s) with CAD, versus 0.58 s (IQR 0.35 to 1.06 s) without. For inexperienced readers, CAD also held visual attention for longer. All visual search metrics used to assess visual gaze behaviour demonstrated statistically significant differences when “with” and “without” CAD were compared. A significant increase in the number of correct polyp identifications across all readers was seen with CAD (74 % without CAD, 87 % with CAD; p < 0.001).
Conclusions: CAD significantly alters visual search and polyp identification in readers viewing three-dimensional endoluminal CTC. For polyp and CAD marker pursuit times, CAD generally exerted a larger effect on inexperienced readers