376 research outputs found
Compressive Pattern Matching on Multispectral Data
We introduce a new constrained minimization problem that performs template
and pattern detection on a multispectral image in a compressive sensing
context. We use an original minimization problem from Guo and Osher that uses
minimization techniques to perform template detection in a multispectral
image. We first adapt this minimization problem to work with compressive
sensing data. Then we extend it to perform pattern detection using a formal
transform called the spectralization along a pattern. That extension brings out
the problem of measurement reconstruction. We introduce shifted measurements
that allow us to reconstruct all the measurement with a small overhead and we
give an optimality constraint for simple patterns. We present numerical results
showing the performances of the original minimization problem and the
compressed ones with different measurement rates and applied on remotely sensed
data.Comment: Published in IEEE Transactions on Geoscience and Remote Sensin
Mercury's Weather-Beaten Surface: An Examination of the Relevant Processes Through Comparisons and Contrasts with the Moon and Asteroids
We examine global color properties of Mercury and their correlations to the predicted trends due to particle bombardment and thermal processing. Color ratio and spectral slope analyzes are interpreted relative to lunar and asteroid studies
Studying Io's Volcanic History Using Thermal Infrared Measurements
A new thermal infrared instrumentation to observe Io combined with the unique capabilities of PEL will provide new insights into the evolution of Io
Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry
International audienceLaser cladding of a Ni based powder on cupro-nickel-aluminum (Cu-Ni-Al) substrate was performed with a 4 kW continuous laser. The Cu-Ni-Al alloy is used for its thermal properties in glass mold industry. The role of the Ni based alloy clad is to protect the mold without affecting its thermal properties by limiting the heat-affected zone. The objective of this research is to produce a well bonded Ni based melted powder without pores or cracks and with a very small dilution zone on a non-planar surface (curved section). The impact of the process parameters such as laser power, scanning speed and powder feeding rate on the coating geometry was investigated with an experimental design technique analysis using the ANOVA (Analysis of variance) method. It was used to determine and represent the influence of each process parameter on the coating geometry (width, height) and the bonding quality. This ANOVA analysis led to a parameter combination to optimize the bonding quality between the Ni coating and the Cu-Ni-Al substrate taking into account the industrial geometrical constraints. More, an analytical calculation allowed to estimate the power necessary for bonding as a function of laser scanning speed and powder feeding rate
On the groove pressing of Ni-W alloy: microstructure, texture and mechanical properties evolution
International audienceThe microstructure, texture and mechanical properties of the Ni-14%W(wt.%) alloy with two different initial grain sizes and textures were investigated after groove pressing (GP) at 450 °C to 4 cycles using Electron Back Scatter Diffraction (EBSD) and microhardness measurements. The initial first series was characterized by small equiaxed grains and Cube dominant texture component. The second series has elongated grains and β-fiber texture. EBSD analysis has shown that GP processing led to a slight refinement (less than 15%) of equiaxed grains in series I while greater refinement (~55%) of the mean spacing along normal direction was observed in series II. The texture did not drastically change from the initial ones and was characterized by the weakening of the Cube component in series I and rapid decrease of Copper component for series II. GP processing reduces very slightly the plastic anisotropy of the alloy with initial elongated granular microstructure
Cr cluster characterization in Cu-Cr-Zr alloy after ECAP processing and aging using SANS and HAADF-STEM
International audienceThe precipitation of nano-sized Cr clusters was investigated in a commercial Cu-1Cr-0.1Zr (wt.%) alloy processed by Equal-Channel Angular Pressing (ECAP) and subsequent aging at 550 °C for 4 hours using small angle neutron scattering (SANS) measurements and high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM). The size and volume fraction of nano-sized Cr clusters were estimated using both techniques. These parameters assessed from SANS (d~3.2 nm, Fv~1.1 %) agreed reasonably with those from HAADF-STEM (d ~2.5 nm, Fv~2.3%). Besides nano-sized Cr clusters, HAADF-STEM technique evidenced the presence of rare cuboid and spheroid sub-micronic Cr particles about 380-620 nm mean size. Both techniques did not evidence the presence of intermetallic CuxZry phases within the aging conditions
Probing Rock Type, Fe Redox State, and Transition Metal Contents with Six-Window VNIR Spectroscopy Under Venus Conditions
VEM-window data are shown to distinguish among key rock types on Venus, and evaluate redox state and transition metal contents of Venus surface rocks
- …