9,493 research outputs found

    Radial flow afterburner for event generators and the baryon puzzle

    Full text link
    A simple afterburner including radial flow to the randomized transverse momentum obtained from event generators, Pythia and Hijing, has been implemented to calculate the p/πp/\pi ratios and compare them with available data. A coherent trend of qualitative agreement has been obtained in pppp collisions and in Au+AuAu+Au for various centralities. Those results indicate that the radial flow does play an important role in the so called baryon puzzle anomaly.Comment: 11 pages, 5 figures. To appear in Journal of Physics

    Impact of tangled magnetic fields on AGN-blown bubbles

    Full text link
    There is growing consensus that feedback from AGN is the main mechanism responsible for stopping cooling flows in clusters of galaxies. AGN are known to inflate buoyant bubbles that supply mechanical power to the intracluster gas (ICM). High Reynolds number hydrodynamical simulations show that such bubbles get entirely disrupted within 100 Myr, as they rise in cluster atmospheres, which is contrary to observations. This artificial mixing has consequences for models trying to quantify the amount of heating and star formation in cool core clusters of galaxies. It has been suggested that magnetic fields can stabilize bubbles against disruption. We perform MHD simulations of fossil bubbles in the presence of tangled magnetic fields using the high order PENCIL code. We focus on the physically-motivated case where thermal pressure dominates over magnetic pressure and consider randomly oriented fields with and without maximum helicity and a case where large scale external fields drape the bubble.We find that helicity has some stabilizing effect. However, unless the coherence length of magnetic fields exceeds the bubble size, the bubbles are quickly shredded. As observations of Hydra A suggest that lengthscale of magnetic fields may be smaller then typical bubble size, this may suggest that other mechanisms, such as viscosity, may be responsible for stabilizing the bubbles. However, since Faraday rotation observations of radio lobes do not constrain large scale ICM fields well if they are aligned with the bubble surface, the draping case may be a viable alternative solution to the problem. A generic feature found in our simulations is the formation of magnetic wakes where fields are ordered and amplified. We suggest that this effect could prevent evaporation by thermal conduction of cold Halpha filaments observed in the Perseus cluster.Comment: accepted for publication in MNRAS, (downgraded resolution figures, color printing recommended

    Description of properties of binary solvent mixtures

    Get PDF

    Jet trails and Mach cones: The interaction of microquasars with the ISM

    Full text link
    A sub-set of microquasars exhibit high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the ISM must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long term dynamical evolution and the observational properties of these microquasar bow shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{\alpha} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of X-ray binary SAX J1712.6-3739.Comment: 33 pages, 13 figures, 1 table; Accepted to Ap

    Flow effects on the freeze-out phase-space density in heavy ion collisions

    Get PDF
    The strong longitudinal expansion of the reaction zone formed in relativistic heavy-ion collisions is found to significantly reduce the spatially averaged pion phase-space density, compared to naive estimates based on thermal distributions. This has important implications for data interpretation and leads to larger values for the extracted pion chemical potential at kinetic freeze-out.Comment: 5 pages, 3 figures included via epsfig, added discussion of different transverse density profiles, 1 new figur

    Anisotropic flow and jet quenching in ultra-relativistic U+U collisions

    Get PDF
    Full-overlap U+U collisions provide significantly larger initial energy densities at comparable spatial deformation, and significantly larger deformation and volume at comparable energy density, than semicentral Au+Au collisions. We show quantitatively that this provides a long lever arm for studying the hydrodynamic behavior of elliptic flow in much larger and denser collision systems and the predicted non-linear path-length dependence of radiative parton energy loss.Comment: 4 pages, incl. 5 figures. First figure of v1 removed due to space limitations. Title changed by journal request. Minor other changes and a few references added or updated. This version accepted by Physical Review Letter

    Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions

    Full text link
    We analyze the effects of different forms of the sound-velocity function cs(T) on the hydrodynamic evolution of matter formed in the central region of relativistic heavy-ion collisions. At high temperatures (above the critical temperature Tc) the sound velocity is calculated from the recent lattice simulations of QCD, while in the low temperature region it is obtained from the hadron gas model. In the intermediate region we use different interpolations characterized by the values of the sound velocity at the local maximum (at T = 0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature dependent sound velocity functions yield the entropy density, which is consistent with the lattice QCD simulations at high temperature. Our calculations show that the presence of a distinct minimum of the sound velocity leads to a very long (about 20 fm/c) evolution time of the system, which is not compatible with the recent estimates based on the HBT interferometry. Hence, we conclude that the hydrodynamic description is favored in the case where the cross-over phase transition renders the smooth sound velocity function with a possible shallow minimum at Tc.Comment: 6 pages, 3 figures, talk given at SQM'07 Levoca, Slovaki

    Sigma Decay at Finite Temperature and Density

    Full text link
    Sigma decay and its relation with chiral phase transition are discussed at finite temperature and density in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2 pions to first order in a 1/N_c expansion is calculated as a function of temperature T and baryon density n_b. In particular, only when the chiral phase transition happens around the tricritical point, the sigma decay results in a non-thermal enhancement of pions in the final state distributions in relativistic heavy ion collisions.Comment: 6 pages, 3 Postscript figures, submitted to Chin. Phys. Let
    corecore