1,573 research outputs found

    Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster

    Get PDF
    Groundbreaking work by Obaid Siddiqi has contributed to the powerful genetic toolkit that is now available for studying the nervous system of Drosophila. Studies carried out in this powerful neurogenetic model system during the last decade now provide insight into the molecular mechanisms that operate in neural stem cells during normal brain development and during abnormal brain tumorigenesis. These studies also provide strong support for the notion that conserved molecular genetic programs act in brain development and disease in insects and mammals including humans

    Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain

    Get PDF
    Background: The number of neurons generated by neural stem cells is dependent upon the regulation of cell proliferation and by programmed cell death. Recently, novel neural stem cells that amplify neural proliferation through intermediate neural progenitors, called type II neuroblasts, have been discovered, which are active during brain development in Drosophila. We investigated programmed cell death in the dorsomedial (DM) amplifying type II lineages that contribute neurons to the development of the central complex in Drosophila, using clonal mosaic analysis with a repressible cell marker (MARCM) and lineage-tracing techniques. Results: A significant number of the adult-specific neurons generated in these DM lineages were eliminated by programmed cell death. Programmed cell death occurred during both larval and pupal stages. During larval development, approximately one-quarter of the neuronal (but not glial) cells in the lineages were eliminated by apoptosis before the formation of synaptic connectivity during pupal stages. Lineage-tracing experiments documented the extensive contribution of intermediate neural progenitor-containing DM lineages to all of the major modular substructures of the adult central complex. Moreover, blockage of apoptotic cell death specifically in these lineages led to prominent innervation defects of DM-derived neural progeny in the major neuropile substructures of the adult central complex. Conclusions: Our findings indicate that significant neural overproliferation occurs normally in type II DM lineage development, and that elimination of excess neurons in these lineages through programmed cell death is required for the formation of correct neuropile innervation in the developing central complex. Thus, amplification of neuronal proliferation through intermediate progenitors and reduction of neuronal number through programmed cell death operate in concert in type II neural stem-cell lineages during brain development

    Neural Stem Cells in Drosophila: Molecular Genetic Mechanisms Underlying Normal Neural Proliferation and Abnormal Brain Tumor Formation

    Get PDF
    Neural stem cells in Drosophila are currently one of the best model systems for understanding stem cell biology during normal development and during abnormal development of stem cell-derived brain tumors. In Drosophila brain development, the proliferative activity of neural stem cells called neuroblasts gives rise to both the optic lobe and the central brain ganglia, and asymmetric cell divisions are key features of this proliferation. The molecular mechanisms that underlie the asymmetric cell divisions by which these neuroblasts self-renew and generate lineages of differentiating progeny have been studied extensively and involve two major protein complexes, the apical complex which maintains polarity and controls spindle orientation and the basal complex which is comprised of cell fate determinants and their adaptors that are segregated into the differentiating daughter cells during mitosis. Recent molecular genetic work has established Drosophila neuroblasts as a model for neural stem cell-derived tumors in which perturbation of key molecular mechanisms that control neuroblast proliferation and the asymmetric segregation of cell fate determinants lead to brain tumor formation. Identification of novel candidate genes that control neuroblast self-renewal and differentiation as well as functional analysis of these genes in normal and tumorigenic conditions in a tissue-specific manner is now possible through genome-wide transgenic RNAi screens. These cellular and molecular findings in Drosophila are likely to provide valuable genetic links for analyzing mammalian neural stem cells and tumor biology

    Impressive expressions: developing a systematic database of gene-expression patterns in Drosophila embryogenesis

    Get PDF
    The establishment of a database of gene-expression patterns derived from systematic high-throughput in situ hybridization studies on whole-mount Drosophila embryos, together with new information on the reannotated Drosophila genome and several recent microarray-based genomic analyses of Drosophila development, vastly increase the breadth and depth that can be reached by developmental genetics

    Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster

    Get PDF
    Groundbreaking work by Obaid Siddiqi has contributed to the powerful genetic toolkit that is now available for studying the nervous system of Drosophila. Studies carried out in this powerful neurogenetic model system during the last decade now provide insight into the molecular mechanisms that operate in neural stem cells during normal brain development and during abnormal brain tumorigenesis. These studies also provide strong support for the notion that conserved molecular genetic programs act in brain development and disease in insects and mammals including humans

    A Transient Expression of Prospero Promotes Cell Cycle Exit of Drosophila Postembryonic Neurons through the Regulation of Dacapo

    Get PDF
    Cell proliferation, specification and terminal differentiation must be precisely coordinated during brain development to ensure the correct production of different neuronal populations. Most Drosophila neuroblasts (NBs) divide asymmetrically to generate a new NB and an intermediate progenitor called ganglion mother cell (GMC) which divides only once to generate two postmitotic cells called ganglion cells (GCs) that subsequently differentiate into neurons. During the asymmetric division of NBs, the homeodomain transcription factor PROSPERO is segregated into the GMC where it plays a key role as cell fate determinant. Previous work on embryonic neurogenesis has shown that PROSPERO is not expressed in postmitotic neuronal progeny. Thus, PROSPERO is thought to function in the GMC by repressing genes required for cell-cycle progression and activating genes involved in terminal differentiation. Here we focus on postembryonic neurogenesis and show that the expression of PROSPERO is transiently upregulated in the newly born neuronal progeny generated by most of the larval NBs of the OL and CB. Moreover, we provide evidence that this expression of PROSPERO in GCs inhibits their cell cycle progression by activating the expression of the cyclin-dependent kinase inhibitor (CKI) DACAPO. These findings imply that PROSPERO, in addition to its known role as cell fate determinant in GMCs, provides a transient signal to ensure a precise timing for cell cycle exit of prospective neurons, and hence may link the mechanisms that regulate neurogenesis and those that control cell cycle progression in postembryonic brain development

    Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Get PDF
    BACKGROUND: In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. RESULTS: Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. CONCLUSION: Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals

    Drosophila adult muscle development and regeneration

    Get PDF
    Myogenesis is a highly orchestrated, complex developmental process by which cell lineages that are mesodermal in origin generate differentiated multinucleate muscle cells as a final product. Considerable insight into the process of myogenesis has been obtained for the embryonic development of the larval muscles of Drosophila. More recently, the postembryonic development of the muscles of the adult fly has become a focus of experimental investigation of myogenesis since specific flight muscles of the fly manifest remarkable similarities to vertebrate muscles in their development and organization. In this review, we catalog some of the milestones in the study of myogenesis in the large adult-specific flight muscles of Drosophila. The identification of mesoderm-derived muscle stem cell lineages, the characterization of the symmetric and asymmetric divisions through which they produce adult-specific myoblasts, the multifaceted processes of myoblast fusion, and the unexpected discovery of quiescent satellite cells that can be activated by injury are discussed. Moreover, the finding that all of these processes incorporate a plethora of signaling interactions with other myogenic cells and with niche-like neighboring tissue is considered. Finally, we briefly point out possible future developments in the area of Drosophila myogenesis that may lead to of new avenues of genetic research into the roles of muscle stem cells in development, disease and aging

    Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster

    Get PDF
    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vecto

    Identification of the Drosophila melanogaster homolog of the human spastin gene

    Get PDF
    The human SPG4 locus encodes the spastin gene, which is responsible for the most prevalent form of autosomal dominant hereditary spastic paraplegia (AD-HSP), a neurodegenerative disorder. Here we identify the predicted gene product CG5977 as the Drosophila homolog of the human spastin gene, with much higher sequence similarities than any other related AAA domain protein in the fly. Furthermore we report a new potential transmembrane domain in the N-terminus of the two homologous proteins. During embryogenesis, the expression pattern of Drosophila spastin becomes restricted primarily to the central nervous system, in contrast to the ubiquitous expression of the vertebrate spastin genes. Given this nervous system-specific expression, it will be important to determine if Drosophila spastin loss-of-function mutations also lead to neurodegeneratio
    corecore