18 research outputs found
Biopharmaceutical Characteristics of Nifurtimox Tablets for Age- and Body Weight-Adjusted Dosing in Patients With Chagas Disease.
Treatment of Chagas disease with nifurtimox requires age- and body weight-adjusted dosing, resulting in complex dosing instructions. Appropriate formulations are needed for precise and compliant dosing, especially in pediatric patients. We characterized the biopharmaceutical features of a standard nifurtimox 120-mg tablet and a 30-mg tablet developed to improve dose accuracy. Two open-label, randomized crossover studies were conducted in adult outpatients with Chagas disease. One study investigated whether 4 × 30-mg tablets and 1 × 120-mg tablet were bioequivalent and whether tablets can be administered as an aqueous slurry without affecting bioavailability. The second study investigated the effect of a high-calorie/high-fat diet versus fasting on the absorption of nifurtimox after a single 4 × 30-mg dose. Interventions were equivalent if the 90% confidence interval (CI) of their least-squares (LS) mean ratios for both AU
Moxifloxacin in Pediatric Patients With Complicated Intra-abdominal Infections: Results of the MOXIPEDIA Randomized Controlled Study
Background: This study was designed to evaluate primarily the safety and also the efficacy of moxifloxacin (MXF) in children with complicated intraabdominal infections (cIAIs). Methods: In this multicenter, randomized, double-blind, controlled study, 451 pediatric patients aged 3 months to 17 years with cIAIs were treated with intravenous/oral MXF (N = 301) or comparator (COMP, intravenous ertapenem followed by oral amoxicillin/clavulanate; N = 150) for 5 to 14 days. Doses of MXF were selected based on the results of a Phase 1 study in pediatric patients (NCT01049022). The primary endpoint was safety, with particular focus on cardiac and musculoskeletal safety; clinical and bacteriologic efficacy at test of cure was also investigated. Results: The proportion of patients with adverse events (AEs) was comparable between the 2 treatment arms (MXF: 58.1% and COMP: 54.7%). The incidence of drug-related AEs was higher in the MXF arm than in the COMP arm (14.3% and 6.7%, respectively). No cases of QTc interval prolongation-related morbidity or mortality were observed. The proportion of patients with musculoskeletal AEs was comparable between treatment arms; no drug-related events were reported. Clinical cure rates were 84.6% and 95.5% in the MXF and COMP arms, respectively, in patients with confirmed pathogen(s) at baseline. Conclusions: MXF treatment was well tolerated in children with cIAIs. However, a lower clinical cure rate was observed with MXF treatment compared with COMP. This study does not support a recommendation of MXF for children with cIAIs when alternative more efficacious antibiotics with better safety profile are available
Effect of Calcium Supplements on the Oral Bioavailability of Moxifloxacin in Healthy Male Volunteers
Penetration of Moxifloxacin into Healthy and Inflamed Subcutaneous Adipose Tissues in Humans
The present study addressed the ability of moxifloxacin to penetrate into healthy and inflamed subcutaneous adipose tissues in 12 patients with soft tissue infections (STIs). Penetration of moxifloxacin into the interstitial space fluid of healthy and inflamed subcutaneous adipose tissues was measured by use of in vivo microdialysis following administration of a single intravenous dosage of 400 mg in six diabetic and six nondiabetic patients with STIs. For the entire study population, the mean time-concentration profile of free moxifloxacin in plasma was identical to the time-concentration profile of free moxifloxacin in tissue (P was not significant). For healthy and inflamed adipose tissues for the diabetic subgroup, the mean moxifloxacin areas under the concentration-time curves (AUCs) from 0 to 8 h (AUC(0-8)s) were 8.1 ± 7.1 and 3.7 ± 1.9 mg·h/liter, respectively (P was not significant). The ratios of the mean AUC(0-8) for inflamed tissue/AUC(0-8) for free moxifloxacin in plasma were 0.5 ± 0.4 for diabetic patients and 1.2 ± 0.8 for nondiabetic patients (P was not significant). The ratios of the AUCs from 0 to 24 h for free moxifloxacin in plasma/MIC at which 90% of isolates are inhibited were >58 and 121 h for Streptococcus species and methicillin-sensitive Staphylococcus aureus, respectively. Concentrations of moxifloxacin effective against clinically relevant bacterial strains are reached in plasma and in inflamed and healthy adipose tissues. Thus, the pharmacokinetics of moxifloxacin in tissue and plasma support its use for the treatment of STIs in diabetic and nondiabetic patients