5,035 research outputs found

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18

    Bipartite all-versus-nothing proofs of Bell's theorem with single-qubit measurements

    Full text link
    If we distribute n qubits between two parties, which quantum pure states and distributions of qubits would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell's theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs for any number of qubits, and provide all distinct proofs up to n=7 qubits. Remarkably, there is only one distribution of a state of n=4 qubits, and six distributions, each for a different state of n=6 qubits, which allow these proofs.Comment: REVTeX4, 4 pages, 2 figure

    Graphical description of the action of Clifford operators on stabilizer states

    Full text link
    We introduce a graphical representation of stabilizer states and translate the action of Clifford operators on stabilizer states into graph operations on the corresponding stabilizer-state graphs. Our stabilizer graphs are constructed of solid and hollow nodes, with (undirected) edges between nodes and with loops and signs attached to individual nodes. We find that local Clifford transformations are completely described in terms of local complementation on nodes and along edges, loop complementation, and change of node type or sign. Additionally, we show that a small set of equivalence rules generates all graphs corresponding to a given stabilizer state; we do this by constructing an efficient procedure for testing the equality of any two stabilizer graphs.Comment: 14 pages, 8 figures. Version 2 contains significant changes. Submitted to PR

    Completeness of the classical 2D Ising model and universal quantum computation

    Full text link
    We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins w.r.t the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.Comment: 4 pages, 1 figure. Minor change

    Graphical calculus for Gaussian pure states

    Get PDF
    We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semi-local Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term "CV graph state" currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the "closest" CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this new graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.Comment: (v3) shortened title, very minor corrections (v2) minor corrections, reference added, new figures for CZ gate and beamsplitter graph rules; (v1) 25 pages, 11 figures (made with TikZ

    Graph Concatenation for Quantum Codes

    Get PDF
    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.Comment: 26 pages, 12 figures. Figures of concatenated [[5,1,3]] and [[7,1,3]] are added. Submitted to JM

    Relating Adversarially Robust Generalization to Flat Minima

    Get PDF

    A monomial matrix formalism to describe quantum many-body states

    Full text link
    We propose a framework to describe and simulate a class of many-body quantum states. We do so by considering joint eigenspaces of sets of monomial unitary matrices, called here "M-spaces"; a unitary matrix is monomial if precisely one entry per row and column is nonzero. We show that M-spaces encompass various important state families, such as all Pauli stabilizer states and codes, the AKLT model, Kitaev's (abelian and non-abelian) anyon models, group coset states, W states and the locally maximally entanglable states. We furthermore show how basic properties of M-spaces can transparently be understood by manipulating their monomial stabilizer groups. In particular we derive a unified procedure to construct an eigenbasis of any M-space, yielding an explicit formula for each of the eigenstates. We also discuss the computational complexity of M-spaces and show that basic problems, such as estimating local expectation values, are NP-hard. Finally we prove that a large subclass of M-spaces---containing in particular most of the aforementioned examples---can be simulated efficiently classically with a unified method.Comment: 11 pages + appendice

    Universal quantum computer from a quantum magnet

    Full text link
    We show that a local Hamiltonian of spin-3/2 particles with only two-body nearest-neighbor Affleck-Kennedy-Lieb-Tasaki and exchange-type interactions has an unique ground state, which can be used to implement universal quantum computation merely with single-spin measurements. We prove that the Hamiltonian is gapped, independent of the system size. Our result provides a further step towards utilizing systems with condensed matter-type interactions for measurement-based quantum computation.Comment: 5 pages, 3 figure
    corecore