124 research outputs found
Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders
According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees
Frail young adult cancer survivors experience poor health-related quality of life
Background: Young adult cancer survivors experience frailty and decreased muscle mass at rates equivalent to much older noncancer populations, which indicate accelerated aging. Although frailty and low muscle mass can be identified in survivors, their implications for health-related quality of life are not well understood. Methods: Through a cross-sectional analysis of young adult cancer survivors, frailty was assessed with the Fried frailty phenotype and skeletal muscle mass in relation to functional and quality of life outcomes measured by the Medical Outcomes Survey Short-Form 36 (SF-36). z tests compared survivors with US population means, and multivariable linear regression models estimated mean SF-36 scores by frailty and muscle mass with adjustments made for comorbidities, sex, and time from treatment. Results: Sixty survivors (median age, 21 years; range, 18-29) participated in the study. Twenty-five (42%) had low muscle mass, and 25 were either frail or prefrail. Compared with US population means, survivors reported worse health and functional impairments across SF-36 domains that were more common among survivors with (pre)frailty or low muscle mass. In multivariable linear modeling, (pre)frail survivors (vs nonfrail) exhibited lower mean scores for general health (−9.1; P =.05), physical function (−14.9; P <.01), and overall physical health (−5.6; P =.02) independent of comorbid conditions. Conclusions: Measures of frailty and skeletal muscle mass identify subgroups of young adult cancer survivors with significantly impaired health, functional status, and quality of life independent of medical comorbidities. Identifying survivors with frailty or low muscle mass may provide opportunities for interventions to prevent functional and health declines or to reverse this process. Lay Summary: Young adult cancer survivors age more quickly than peers without cancer, which is evidenced by a syndrome of decreased resilience known as frailty. The relationship between frailty (and one of its common components, decreased muscle mass) and quality of life among young adult cancer survivors was examined. Measuring decreased muscle mass and frailty identifies young survivors with poor quality of life, including worse general health, fatigue, physical function, and overall physical health, compared with nonfrail survivors. Interventions to address components of frailty (low muscle mass and weakness) may improve function and quality of life among young adult cancer survivors
An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter
Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of a number of soil properties. However, although several soil spectral laboratories have been established worldwide, the distinct characteristics of instruments and operations still hamper further integration and interoperability across mid-infrared (MIR) soil spectral libraries. In this study, we conducted a large-scale ring trial experiment to understand the lab-to-lab variability of multiple MIR instruments. By developing a systematic evaluation of different mathematical treatments with modeling algorithms, including regular preprocessing and spectral standardization, we quantified and evaluated instruments' dissimilarity and how this impacts internal and shared model performance. We found that all instruments delivered good predictions when calibrated internally using the same instruments' characteristics and standard operating procedures by solely relying on regular spectral preprocessing that accounts for light scattering and multiplicative/additive effects, e.g., using standard normal variate (SNV). When performing model transfer from a large public library (the USDA NSSC-KSSL MIR library) to secondary instruments, good performance was also achieved by regular preprocessing (e.g., SNV) if both instruments shared the same manufacturer. However, significant differences between the KSSL MIR library and contrasting ring trial instruments responses were evident and confirmed by a semi-unsupervised spectral clustering. For heavily contrasting setups, spectral standardization was necessary before transferring prediction models. Non-linear model types like Cubist and memory-based learning delivered more precise estimates because they seemed to be less sensitive to spectral variations than global partial least square regression. In summary, the results from this study can assist new laboratories in building spectroscopy capacity utilizing existing MIR spectral libraries and support the recent global efforts to make soil spectroscopy universally accessible with centralized or shared operating procedures
Relative fat oxidation is higher in children than adults
Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.e., 25 to 35% of energy) compared with adults (i.e., 20 to 35% of energy). Despite this, many parents and children restrict dietary fat for health reasons. Methods: This study assessed whether rates of fat oxidation are similar between prepubescent children and adults. Ten children (8.7 ± 1.4 yr, 33 ± 13 kg mean ± SD) in Tanner stage 1 and 10 adults (41.6 ± 8 yr, 74 ± 13 kg) were fed a weight maintenance diet for three days to maintain body weight and to establish a consistent background for metabolic rate measurements (all foods provided). Metabolic rate was measured on three separate occasions before and immediately after breakfast and for 9 hrs using a hood system (twice) or a room calorimeter (once) where continuous metabolic measurements were taken. Results: During all three sessions whole body fat oxidation was higher in children (lower RQ) compared to adults (mean RQ= 0.84 ± .016 for children and 0.87 ± .02, for adults, p < 0.02). Although, total grams of fat oxidized was similar in children (62.7 ± 20 g/24 hrs) compared to adults (51.4 ± 19 g/24 hrs), the grams of fat oxidized relative to calorie expenditure was higher in children (0.047 ± .01 g/kcal, compared to adults (0.032 ± .01 p < 0.02). Females oxidized more fat relative to calorie expenditure than males of a similar age. A two way ANOVA showed no interaction between gender and age in terms of fax oxidation. Conclusion: These data suggest that fat oxidation relative to total calorie expenditure is higher in prepubescent children than in adults. Consistent with current dietary guidelines, a moderate fat diet is appropriate for children within the context of a diet that meets their energy and nutrient needs. Originally published Nutrition Journal, Vol. 6, No. 19, Aug 200
Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Plants
Kazakh dandelion (Taraxacum kok-saghyz, Tk) is a rubber-producing plant currently being investigated as a source of natural rubber for industrial applications. Like many other isoprenoids, rubber is a downstream product of the mevalonate pathway. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the conversion of 3-hydroxy-3-methylglutaryl-CoA to mevalonic acid, a key regulatory step in the MVA pathway. Such regulated steps provide targets for increases in isoprenoid and rubber contents via genetic engineering to increase enzyme activities. In this study, we identify a TkHMGR1 gene that is highly expressed in the roots of Kazakh dandelion, the main tissue where rubber is synthesized and stored. This finding paves the way for further molecular and genetic studies of the TkHMGR1 gene, and its role in rubber biosynthesis in Tk and other rubber-producing plants
- …