36 research outputs found

    A unified resource and configurable model of the synapse proteome and its role in disease

    Get PDF
    Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein–protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use

    Systems Biology in ELIXIR: modelling in the spotlight

    Get PDF
    In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR\u27s future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives

    Community-driven ELIXIR activities in single-cell omics

    Get PDF
    Single-cell omics (SCO) has revolutionized the way and the level of resolution by which life science research is conducted, not only impacting our understanding of fundamental cell biology but also providing novel solutions in cutting-edge medical research. The rapid development of single-cell technologies has been accompanied by the active development of data analysis methods, resulting in a plethora of new analysis tools and strategies every year. Such a rapid development of SCO methods and tools poses several challenges in standardization, benchmarking, computational resources and training. These challenges are in line with the activities of ELIXIR, the European coordinated infrastructure for life science data. Here, we describe the current landscape of and the main challenges in SCO data, and propose the creation of the ELIXIR SCO Community, to coordinate the efforts in order to best serve SCO researchers in Europe and beyond. The Community will build on top of national experiences and pave the way towards integrated long-term solutions for SCO research. Keywor

    LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases

    Get PDF
    The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our “modern” postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.</p

    A Systems Biological Approach to Parkinson's Disease

    No full text
    Parkinson’s Disease (PD) is the second most common neurodegenerative disease in the Western world. Itshows a high degree of genetic and phenotypic complexity with many implicated factors, various diseasemanifestations but few clear causal links. Ongoing research has identified a growing number of molecularalterations linked to the disease.Dopaminergic neurons in the substantia nigra, specifically their synapses, are the key-affected region in PD.Therefore, this work focuses on understanding the disease effects on the synapse, aiming to identify potentialgenetic triggers and synaptic PD associated mechanisms. Currently, one of the main challenges in this area isdata quality and accessibility.In order to study PD, publicly available data were systematically retrieved and analysed. 418 PD associatedgenes could be identified, based on mutations and curated annotations. I curated an up-to-date and completesynaptic proteome map containing a total of 6,706 proteins. Region specific datasets describing thepresynapse, postsynapse and synaptosome were also delimited. These datasets were analysed, investigatingsimilarities and differences, including reproducibility and functional interpretations.The use of Protein-Protein-Interaction Network (PPIN) analysis was chosen to gain deeper knowledgeregarding specific effects of PD on the synapse. Thus I generated a customised, filtered, human specificProtein-Protein Interaction (PPI) dataset, containing 211,824 direct interactions, from four public databases.Proteomics data and PPI information allowed the construction of PPINs. These were analysed and a set oflow level statistics, including modularity, clustering coefficient and node degree, explaining the network’stopology from a mathematical point of view were obtained.Apart from low-level network statistics, high-level topology of the PPINs was studied. To identify functionalnetwork subgroups, different clustering algorithms were investigated. In the context of biological networks, theunderlying hypothesis is that proteins in a structural community are more likely to share common functions.Therefore I attempted to identify PD enriched communities of synaptic proteins. Once identified, they werecompared amongst each other. Three community clusters could be identified as containing largely overlappinggene sets. These contain 24 PD associated genes. Apart from the known disease associated genes in thesecommunities, a total of 322 genes was identified. Each of the three clusters is specifically enriched for specificbiological processes and cellular components, which include neurotransmitter secretion, positive regulation ofsynapse assembly, pre- and post-synaptic membrane, scaffolding proteins, neuromuscular junctiondevelopment and complement activation (classical pathway) amongst others.The presented approach combined a curated set of PD associated genes, filtered PPI information andsynaptic proteomes. Various small- and large-scale analytical approaches, including PPIN topology analysis,clustering algorithms and enrichment studies identified highly PD affected synaptic proteins and subregions.Specific disease associated functions confirmed known research insights and allowed me to propose a newlist of so far unknown potential disease associated genes. Due to the open design, this approach can be usedto answer similar research questions regarding other complex diseases amongst others.Parkinsons sjukdom (PS) Ă€r den nĂ€st vanligaste neurodegenerativa sjukdomen i vĂ€st-vĂ€rlden. Den uppvisar en hög grad av genetisk och fenotypisk komplexitet, med mĂ„ngafaktorer inblandade, den manifesterar sig pĂ„ olika sĂ€tt men det finns fĂ„ identifieradeorsakssamband. Forskningen har dock identifierat fler och fler molekylĂ€ra förĂ€ndringarsom Ă€r kopplade till sjukdomen.Det Ă€r frĂ€mst dopaminerga nervceller i Substantia Nigra och speciellt deras synap-ser, som Ă€r pĂ„verkade vid PS. Denna avhandling fokuserar dĂ€rför pĂ„ att förstĂ„ desynaptiska sjukdomseffekterna bĂ€ttre, och arbetet har som ambition att identifiera genetisktorsakade och synaptiskt associerade PS-mekanismer. Idag Ă€r en huvudsaklig utmaninginom detta fĂ€lt kvaliteten pĂ„ och Ă„tkomsten av data.I denna studie inhĂ€mtades och analyserades publikt data pĂ„ ett systematiskt sĂ€tt, föratt bĂ€ttre förstĂ„ PS. 418 PS-associerade gener kunde identifieras baserat pĂ„ mutationersamt kurerade annoteringar av data. Jag kurerade ett synapsproteom som innehöll to-talt 6706 proteiner. Regionspecifika datamĂ€ngder som beskriver presynapsen, postsy-napsen och hela synapsregionen definierades ocksĂ„. Dessa datamĂ€ngder analyseradesgenom att undersöka likheter och skillnader, inklusive reproducerbarhet av resultatensamt proteinernas funktionella kopplingar.Analys av Protein-Protein-Interaktions NĂ€tverk (PPIN) valdes för att fĂ„ en dju-pare kunskap vad gĂ€ller specifika effekter av PS pĂ„ synapsen. DĂ€rför genereradejag ett specifikt Protein-Protein-Interaktions (PPI dataset frĂ„n fyra publika databasersom innehöll 211824 direkta interaktioner. Proteomikdata och PPI-information frĂ„ndetta dataset skapade förutsĂ€ttningar för att konstruera nĂ„gra PPINs. Dessa anal-yserades och statistisk information erhölls vad gĂ€ller nĂ€tverkens modularitet, klus-tringskoefficient och nodgrad, vilket beskriver nĂ€tverkens topologi utifrĂ„n en matem-atisk synvinkel. Förutom denna grundlĂ€ggande nĂ€tverksstatistik, undersöktes ocksĂ„mer specifika egenskaper vad gĂ€ller topologin i de studerade PPINs. För att under-söka funktionella undergrupper i nĂ€tverken anvĂ€ndes olika klustringsalgoritmer. NĂ€rdet gĂ€ller biologiska nĂ€tverk Ă€r den underliggande hypotesen att proteiner som ingĂ„r isamma strukturella grupp har högre sannolikhet att ha gemensamma funktioner. DĂ€r-för försökte jag identifiera grupper anrikade med synapsproteiner som associeras medPS. Dessa grupper jĂ€mfördes sedan med varandra. Tre kluster identifierades vilka in-nehöll överlappande uppsĂ€ttningar gener. Dessa innehöll 24 gener associerade med PS.Förutom de gener som man redan vet Ă€r associerade med sjukdomen, identifierade viytterligare 322 potentiella gener. För vart och ett av dessa tre kluster var förekomsten  av vissa biologiska processer och cellulĂ€ra komponenter förhöjd, sĂ„som sĂ„dana somĂ€r involverade i den synaptiska transmissionen eller reglerar pre- och postsynapsensproteinorganisation, inklusive t.e.x. “scaffold” proteiner och klassisk komplementak-tivering (relaterat till immunystemet).Det beskrivna tillvĂ€gagĂ„ngssĂ€ttet kombinerar en kurerad datamĂ€ngd av gener as-socierade med PS, filtrerad PPI information och synapsproteom. Olika smĂ„- ochstorskaliga analytiska metoder, sĂ„som topologianalys av PPINs, klustringsalgoritmeroch anrikningsstudier identifierade synapsproteiner som var pĂ„verkade vid PS. Despecifika sjukdomsassocierade proteinfunktioner som identifierades bekrĂ€ftade redanexisterande kunskap, och tillĂ€t mig att lista tidigare okĂ€nda potentiella sjukdomsas-socierade gener. Ett liknande tillvĂ€gagĂ„ngssĂ€tt kan i framtiden Ă€ven appliceras pĂ„ an-dra komplexa sjukdomar.QC 20180403</p

    A Systems Biological Approach to Parkinson's Disease

    No full text
    Parkinson’s Disease (PD) is the second most common neurodegenerative disease in the Western world. Itshows a high degree of genetic and phenotypic complexity with many implicated factors, various diseasemanifestations but few clear causal links. Ongoing research has identified a growing number of molecularalterations linked to the disease.Dopaminergic neurons in the substantia nigra, specifically their synapses, are the key-affected region in PD.Therefore, this work focuses on understanding the disease effects on the synapse, aiming to identify potentialgenetic triggers and synaptic PD associated mechanisms. Currently, one of the main challenges in this area isdata quality and accessibility.In order to study PD, publicly available data were systematically retrieved and analysed. 418 PD associatedgenes could be identified, based on mutations and curated annotations. I curated an up-to-date and completesynaptic proteome map containing a total of 6,706 proteins. Region specific datasets describing thepresynapse, postsynapse and synaptosome were also delimited. These datasets were analysed, investigatingsimilarities and differences, including reproducibility and functional interpretations.The use of Protein-Protein-Interaction Network (PPIN) analysis was chosen to gain deeper knowledgeregarding specific effects of PD on the synapse. Thus I generated a customised, filtered, human specificProtein-Protein Interaction (PPI) dataset, containing 211,824 direct interactions, from four public databases.Proteomics data and PPI information allowed the construction of PPINs. These were analysed and a set oflow level statistics, including modularity, clustering coefficient and node degree, explaining the network’stopology from a mathematical point of view were obtained.Apart from low-level network statistics, high-level topology of the PPINs was studied. To identify functionalnetwork subgroups, different clustering algorithms were investigated. In the context of biological networks, theunderlying hypothesis is that proteins in a structural community are more likely to share common functions.Therefore I attempted to identify PD enriched communities of synaptic proteins. Once identified, they werecompared amongst each other. Three community clusters could be identified as containing largely overlappinggene sets. These contain 24 PD associated genes. Apart from the known disease associated genes in thesecommunities, a total of 322 genes was identified. Each of the three clusters is specifically enriched for specificbiological processes and cellular components, which include neurotransmitter secretion, positive regulation ofsynapse assembly, pre- and post-synaptic membrane, scaffolding proteins, neuromuscular junctiondevelopment and complement activation (classical pathway) amongst others.The presented approach combined a curated set of PD associated genes, filtered PPI information andsynaptic proteomes. Various small- and large-scale analytical approaches, including PPIN topology analysis,clustering algorithms and enrichment studies identified highly PD affected synaptic proteins and subregions.Specific disease associated functions confirmed known research insights and allowed me to propose a newlist of so far unknown potential disease associated genes. Due to the open design, this approach can be usedto answer similar research questions regarding other complex diseases amongst others.Parkinsons sjukdom (PS) Ă€r den nĂ€st vanligaste neurodegenerativa sjukdomen i vĂ€st-vĂ€rlden. Den uppvisar en hög grad av genetisk och fenotypisk komplexitet, med mĂ„ngafaktorer inblandade, den manifesterar sig pĂ„ olika sĂ€tt men det finns fĂ„ identifieradeorsakssamband. Forskningen har dock identifierat fler och fler molekylĂ€ra förĂ€ndringarsom Ă€r kopplade till sjukdomen.Det Ă€r frĂ€mst dopaminerga nervceller i Substantia Nigra och speciellt deras synap-ser, som Ă€r pĂ„verkade vid PS. Denna avhandling fokuserar dĂ€rför pĂ„ att förstĂ„ desynaptiska sjukdomseffekterna bĂ€ttre, och arbetet har som ambition att identifiera genetisktorsakade och synaptiskt associerade PS-mekanismer. Idag Ă€r en huvudsaklig utmaninginom detta fĂ€lt kvaliteten pĂ„ och Ă„tkomsten av data.I denna studie inhĂ€mtades och analyserades publikt data pĂ„ ett systematiskt sĂ€tt, föratt bĂ€ttre förstĂ„ PS. 418 PS-associerade gener kunde identifieras baserat pĂ„ mutationersamt kurerade annoteringar av data. Jag kurerade ett synapsproteom som innehöll to-talt 6706 proteiner. Regionspecifika datamĂ€ngder som beskriver presynapsen, postsy-napsen och hela synapsregionen definierades ocksĂ„. Dessa datamĂ€ngder analyseradesgenom att undersöka likheter och skillnader, inklusive reproducerbarhet av resultatensamt proteinernas funktionella kopplingar.Analys av Protein-Protein-Interaktions NĂ€tverk (PPIN) valdes för att fĂ„ en dju-pare kunskap vad gĂ€ller specifika effekter av PS pĂ„ synapsen. DĂ€rför genereradejag ett specifikt Protein-Protein-Interaktions (PPI dataset frĂ„n fyra publika databasersom innehöll 211824 direkta interaktioner. Proteomikdata och PPI-information frĂ„ndetta dataset skapade förutsĂ€ttningar för att konstruera nĂ„gra PPINs. Dessa anal-yserades och statistisk information erhölls vad gĂ€ller nĂ€tverkens modularitet, klus-tringskoefficient och nodgrad, vilket beskriver nĂ€tverkens topologi utifrĂ„n en matem-atisk synvinkel. Förutom denna grundlĂ€ggande nĂ€tverksstatistik, undersöktes ocksĂ„mer specifika egenskaper vad gĂ€ller topologin i de studerade PPINs. För att under-söka funktionella undergrupper i nĂ€tverken anvĂ€ndes olika klustringsalgoritmer. NĂ€rdet gĂ€ller biologiska nĂ€tverk Ă€r den underliggande hypotesen att proteiner som ingĂ„r isamma strukturella grupp har högre sannolikhet att ha gemensamma funktioner. DĂ€r-för försökte jag identifiera grupper anrikade med synapsproteiner som associeras medPS. Dessa grupper jĂ€mfördes sedan med varandra. Tre kluster identifierades vilka in-nehöll överlappande uppsĂ€ttningar gener. Dessa innehöll 24 gener associerade med PS.Förutom de gener som man redan vet Ă€r associerade med sjukdomen, identifierade viytterligare 322 potentiella gener. För vart och ett av dessa tre kluster var förekomsten  av vissa biologiska processer och cellulĂ€ra komponenter förhöjd, sĂ„som sĂ„dana somĂ€r involverade i den synaptiska transmissionen eller reglerar pre- och postsynapsensproteinorganisation, inklusive t.e.x. “scaffold” proteiner och klassisk komplementak-tivering (relaterat till immunystemet).Det beskrivna tillvĂ€gagĂ„ngssĂ€ttet kombinerar en kurerad datamĂ€ngd av gener as-socierade med PS, filtrerad PPI information och synapsproteom. Olika smĂ„- ochstorskaliga analytiska metoder, sĂ„som topologianalys av PPINs, klustringsalgoritmeroch anrikningsstudier identifierade synapsproteiner som var pĂ„verkade vid PS. Despecifika sjukdomsassocierade proteinfunktioner som identifierades bekrĂ€ftade redanexisterande kunskap, och tillĂ€t mig att lista tidigare okĂ€nda potentiella sjukdomsas-socierade gener. Ett liknande tillvĂ€gagĂ„ngssĂ€tt kan i framtiden Ă€ven appliceras pĂ„ an-dra komplexa sjukdomar.QC 20180403</p

    Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases

    No full text
    Base excision repair is the dominant DNA repair pathway of chemical modifications such as deamination, oxidation, or alkylation of DNA bases, which endanger genome integrity due to their high mutagenic potential. Detection and excision of these base lesions is achieved by DNA glycosylases. To investigate the remarkably high efficiency in target site search and recognition by these enzymes, we applied single molecule atomic force microscopy (AFM) imaging to a range of glycosylases with structurally different target lesions. Using a novel, automated, unbiased, high-throughput analysis approach, we were able to resolve subtly different conformational states of these glycosylases during DNA lesion search. Our results lend support to a model of enhanced lesion search efficiency through initial lesion detection based on altered mechanical properties at lesions. Furthermore, its enhanced sensitivity and easy applicability also to other systems recommend our novel analysis tool for investigations of diverse, fundamental biological interactions
    corecore