170 research outputs found

    A structured approach to the study of metabolic control principles in intact and impaired mitochondria.

    Get PDF
    We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations

    Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU (R))

    Get PDF
    Background: Blunt thoracic trauma is one of the critical injury mechanisms in multiply injured trauma victims. Although these patients present a plethora of potential structural damages to vital organs, it remains debated which injuries actually influence outcome and thereby should be addressed initially. Hence, the aim of this study was to identify the influence of critical structural damages on mortality. Methods: All patients in the database of the TraumaRegister DGU (R) (TR-DGU) from 2002-2011 with AIS Chest >= 2, blunt trauma, age of 16 or older and an ISS >= 16 were analyzed. Outcome parameters were in-hospital mortality as well as ventilation time in patients surviving the initial 14 days after trauma. Results: 22613 Patients were included (mean ISS 30.5 +/- 12.6; 74.7% male; Mean Age 46.1 +/- 197 years; mortality 17.5%; mean duration of ventilation 7.3 +/- 11.5; mean ICU stay 11.7 +/- 14.1 days). Only a limited number of specific injuries had a significant impact on survival. Major thoracic vessel injuries (AIS >= 5), bilateral lung contusion, bilateral flail chest, structural heart injury (AIS >= 3) significantly influence mortality in study patients. Several extrathoracic factors (age, blood transfusion, systolic blood pressure and extrathoracic severe injuries) were also predictive of increased mortality. Most injuries of the thoracic wall had no or only a moderate effect on the duration of ventilation. Injuries to the lung (laceration, contusion or pneumothoraces) had a moderate prolonging effect. Cardiac injuries and severe injuries to the thoracic vessels induced a substantially prolonged ventilation interval. Conclusions: We demonstrate quantitatively the influence of specific structural damages of the chest on critical outcome parameters. While most injuries of the chest wall have no or only limited impact in the study collective, injuries to the lung overall show adverse outcome. Injuries to the heart or thoracic vessels have a devastating prognosis following blunt chest trauma

    Single-Cell Imaging of Bioenergetic Responses to Neuronal Excitotoxicity and Oxygen and Glucose Deprivation

    Get PDF
    Excitotoxicity is a condition occurring during cerebral ischemia, seizures, and chronic neurodegeneration. It is characterized by overactivation of glutamate receptors, leading to excessive Ca2+/Na+ influx into neurons, energetic stress, and subsequent neuronal injury.We and others have previously investigated neuronal populations to study how bioenergetic parameters determine neuronal injury; however, such experiments are often confounded by population-based heterogeneity and the contribution of effects of non-neuronal cells. Hence, we here characterized bioenergetics during transient excitotoxicity in rat and mouse primary neurons at the single-cell level using fluorescent sensors for intracellular glucose, ATP, and activation of the energy sensor AMP-activated protein kinase (AMPK). We identified ATP depletion and recovery to energetic homeostasis, along withAMPKactivation, as surprisingly rapid and plastic responses in two excitotoxic injury paradigms. We observed rapid recovery of neuronal ATP levels also in the absence of extracellular glucose, or when glycolytic ATP production was inhibited, but found mitochondria to be critical for fast and complete energetic recovery. Using an injury model of oxygen and glucose deprivation, we identified a similarly rapid bioenergetics response, yet with incompleteATPrecovery and decreasedAMPKactivity. Interestingly, excitotoxicity also induced an accumulation of intracellular glucose, providing an additional source of energy during and after excitotoxicity-induced energy depletion. We identified this to originate from extracellular, AMPKdependent glucose uptake and from intracellular glucose mobilization. Surprisingly, cells recovering their elevated glucose levels faster to baseline survived longer, indicating that the plasticity of neurons to adapt to bioenergetic challenges is a key indicator of neuronal viability

    Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate-induced necrosis, apoptosis, and tolerance.

    Get PDF
    A failure of mitochondrial bioenergetics has been shown to be closely associated with the onset of apoptotic and necrotic neuronal injury. Here, we developed an automated computational model that interprets the single-cell fluorescence for tetramethylrhodamine methyl ester (TMRM) as a consequence of changes in either delta psi(m) or delta psi(p), thus allowing for the characterization of responses for populations of single cells and subsequent statistical analysis. Necrotic injury triggered by prolonged glutamate excitation resulted in a rapid monophasic or biphasic loss of delta psi(m) that was closely associated with a loss of delta psi(p) and a rapid decrease in neuronal NADPH and ATP levels. Delayed apoptotic injury, induced by transient glutamate excitation, resulted in a small, reversible decrease in TMRM fluorescence, followed by a sustained hyperpolarization of delta psi(m) as confirmed using the delta psi(p)-sensitive anionic probe DiBAC2(3). This hyperpolarization of delta psi(m) was closely associated with a significant increase in neuronal glucose uptake, NADPH availability, and ATP levels. Statistical analysis of the changes in delta psi(m) or delta psi(p) at a single-cell level revealed two major correlations; those neurons displaying a more pronounced depolarization of delta psi(p) during the initial phase of glutamate excitation entered apoptosis more rapidly, and neurons that displayed a more pronounced hyperpolarization of delta psi(m) after glutamate excitation survived longer. Indeed, those neurons that were tolerant to transient glutamate excitation (18%) showed the most significant increases in delta psi(m). Our results indicate that a hyperpolarization of delta psi(m) is associated with increased glucose uptake, NADPH availability, and survival responses during excitotoxic injury

    Dynamics of outer mitochondrial membrane permeabilization during apoptosis.

    Get PDF
    Individual cells within a population undergo apoptosis at distinct, apparently random time points. By analyzing cellular mitotic history, we identified that sibling HeLa cell pairs, in contrast to random cell pairs, underwent apoptosis synchronously. This allowed us to use high-speed cellular imaging to investigate mitochondrial outer membrane permeabilization (MOMP), a highly coordinated, rapid process during apoptosis, at a temporal resolution approximately 100 times higher than possible previously. We obtained new functional and mechanistic insight into the process of MOMP: We were able to determine the kinetics of pore formation in the outer mitochondrial membrane from the initiation phase of cytochrome-c-GFP redistribution, and showed differential pore formation kinetics in response to intrinsic or extrinsic apoptotic stimuli (staurosporine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)). We also detected that the onset of mitochondrial permeabilization frequently proceeded as a wave through the cytosol, and that the frequency of wave occurrence in response to TRAIL was reduced by inhibition of protein kinase CK2. Computational analysis by a partial differential equation model suggested that the spread of permeabilization signals could sufficiently be explained by diffusion-adsorption velocities of locally generated permeabilization inducers. Taken together, our study yielded the first comprehensive analysis of clonal cell-to-cell variability in apoptosis execution and allowed to visualize and explain the dynamics of MOMP in cells undergoing apoptosis

    Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release

    Get PDF
    How can cancer cells survive the consequences of cyt-c release? Huber et al provide a quantitative analysis of the protective role of enhanced glucose utilization in cancer cells and investigate the impact of cell-to-cell heterogeneity in mitochondrial bioenergetics

    ALISSA: an automated live-cell imaging system for signal transduction analyses

    Get PDF
    Probe photobleaching and a specimen’s sensitivity to phototoxicity severely limit the number of possible excitation cycles in time-lapse fluorescent microscopy experiments. Consequently, when a study of cellular processes requires measurements over hours or days, temporal resolution is limited, and spontaneous or rapid events may be missed, thus limiting conclusions about transduction events. We have developed ALISSA, a design framework and reference implementation for an automated live-cell imaging system for signal transduction analysis. It allows an adaptation of image modalities and laser resources tailored to the biological process, and thereby extends temporal resolution from minutes to seconds. The system employs online image analysis to detect cellular events that are then used to exercise microscope control. It consists of a reusable image analysis software for cell segmentation, tracking, and time series extraction, and a measurement-specific process control software that can be easily adapted to various biological settings. We have applied the ALISSA framework to the analysis of apoptosis as a demonstration case for slow onset and rapid execution signaling. The demonstration provides a clear proof-of-concept for ALISSA, and offers guidelines for its application in a broad spectrum of signal transduction studies

    Systems analysis of cancer cell heterogeneity in caspase-dependent apoptosis subsequent to mitochondrial outer membrane permeabilization.

    Get PDF
    Deregulation of apoptosis is a hallmark of carcinogenesis. We here combine live cell imaging and systems modeling to investigate caspase-dependent apoptosis execution subsequent to mitochondrial outer membrane permeabilization (MOMP) in several cancer cell lines. We demonstrate that, although most cell lines that underwent MOMP also showed robust and fast activation of executioner caspases and apoptosis, the colorectal cancer cell lines LoVo and HCT-116 Smac(-/-), similar to X-linked inhibitor of apoptosis protein (XIAP)-overexpressing HeLa (HeLa XIAP(Adv)) cells, only showed delayed and often no caspase activation, suggesting apoptosis impairment subsequent to MOMP. Employing APOPTO-CELL, a recently established model of apoptosis subsequent to MOMP, this impairment could be understood by studying the systemic interaction of five proteins that are present in the apoptosis pathway subsequent to MOMP. Using APOPTO-CELL as a tool to study detailed molecular mechanisms during apoptosis execution in individual cell lines, we demonstrate that caspase-9 was the most important regulator in DLD-1, HCT-116, and HeLa cells and identified additional cell line-specific co-regulators. Developing and applying a computational workflow for parameter screening, systems modeling identified that apoptosis execution kinetics are more robust against changes in reaction kinetics in HCT-116 and HeLa than in DLD-1 cells. Our systems modeling study is the first to draw attention to the variability in cell specific protein levels and reaction rates and to the emergent effects of such variability on the efficiency of apoptosis execution and on apoptosis impairment subsequent to MOMP

    Latrepirdine is a potent activator of AMP-activated protein kinase and reduces neuronal excitability.

    Get PDF
    Latrepirdine/Dimebon is a small-molecule compound with attributed neurocognitive-enhancing activities, which has recently been tested in clinical trials for the treatment of Alzheimer\u27s and Huntington\u27s disease. Latrepirdine has been suggested to be a neuroprotective agent that increases mitochondrial function, however the molecular mechanisms underlying these activities have remained elusive. We here demonstrate that latrepirdine, at (sub)nanomolar concentrations (0.1 nM), activates the energy sensor AMP-activated protein kinase (AMPK). Treatment of primary neurons with latrepirdine increased intracellular ATP levels and glucose transporter 3 translocation to the plasma membrane. Latrepirdine also increased mitochondrial uptake of the voltage-sensitive probe TMRM. Gene silencing of AMPKα or its upstream kinases, LKB1 and CaMKKβ, inhibited this effect. However, studies using the plasma membrane potential indicator DisBAC2(3) demonstrated that the effects of latrepirdine on TMRM uptake were largely mediated by plasma membrane hyperpolarization, precluding a purely \u27mitochondrial\u27 mechanism of action. In line with a stabilizing effect of latrepirdine on plasma membrane potential, pretreatment with latrepirdine reduced spontaneous Ca(2+) oscillations as well as glutamate-induced Ca(2+) increases in primary neurons, and protected neurons against glutamate toxicity. In conclusion, our experiments demonstrate that latrepirdine is a potent activator of AMPK, and suggest that one of the main pharmacological activities of latrepirdine is a reduction in neuronal excitability
    corecore