12 research outputs found

    Diagnostic Gene Panel Testing in (Non)-Syndromic Patients with Cleft Lip, Alveolus and/or Palate in the Netherlands

    Get PDF
    OBJECTIVES: Clefts of the lip, alveolus and/or palate (CLA/P) are the most common craniofacial congenital malformations in humans. These oral clefts can be divided into non-syndromic (isolated) and syndromic forms. Many cleft-related syndromes are clinically variable and genetically heterogeneous, making it challenging to distinguish syndromic from non-syndromic cases. Recognition of syndromic/genetic causes is important for personalized tailored care, identification of (unrecognized) comorbidities, and accurate genetic counseling. Therefore, next generation sequencing (NGS)-based targeted gene panel testing is increasingly implemented in diagnostics of CLA/P patients. In this retrospective study, we assess the yield of NGS gene panel testing in a cohort of CLA/P cases. METHODS: Whole exome sequencing (WES) followed by variant detection and interpretation in an a priori selected set of genes associated with CLA/P phenotypes was performed in 212 unrelated CLA/P patients after genetic counseling between 2015 and 2020. Medical records including family history and results of additional genetic tests were evaluated. RESULTS: In 24 CLA/P cases (11.3%), a pathogenic genetic variant was identified. Twenty out of these 24 had a genetic syndrome requiring specific monitoring and follow-up. Six of these 24 cases (25%) were presumed to be isolated CLA/P cases prior to testing, corresponding to 2.8% of the total cohort. In eight CLA/P cases (3.8%) without a diagnosis after NGS-based gene panel testing, a molecular diagnosis was established by additional genetic analyses (e.g., SNP array, single gene testing, trio WES). CONCLUSION: This study illustrates NGS-based gene panel testing is a powerful diagnostic tool in the diagnostic workup of CLA/P patients. Also, in apparently isolated cases and non-familial cases, a genetic diagnosis can be identified. Early diagnosis facilitates personalized care for patients and accurate genetic counseling of their families

    Neonatal cholestasis, hyperferritinemia, hypoglycemia and deafness:a diagnostic challenge

    No full text
    Neonatal conjugated hyperbilirubinemia is a diagnostic challenge. A full term, small for gestational age boy presented with cholestasis, hypoglycemia, hyperferritinemia and severe bilateral deafness. Diagnostic work-up revealed two hereditary diseases: alpha-1-antitrypsin deficiency (PI*ZZ genotype) and autosomal recessive deafness type 3 (compound heterozygous MYO15A gene mutation). In addition, we found late hypoglycemia on full enteral feeding which complicated this case. Hyperferritinemia is an uncommon finding in newborn cholestasis without liver failure

    Growth, health, and motor development of 5-year-old children born after preimplantation genetic diagnosis

    No full text
    Objective: To evaluate the growth, health, and motor development of children born after preimplantation genetic diagnosis (PGD). Design: Observational cohort study and comparison of 5-year-old children born after PGD to similar aged children born after IVF/intracytoplasmic sperm injection (ICSI) and children from families with a genetic disorder born after natural conception (NC). Setting: University hospital. Patient(s): One hundred three children were included in the PGD group. The two control groups consisted of 90 children born after IVF/ICSI and 58 children born after NC. Intervention(s): PGD. Main Outcome Measure(s): We measured height, weight, body circumferences, body mass index, and blood pressure and performed a dysmorphological and neurological examination. We also collected data about the children's medical history, health care consultations, and motor milestones. Result(s): The mean height, weight, and body mass index were comparable for all groups. Six (5.8%) PGD, four (4.4%) IVF/ICSI, and five (8.6%) NC children had a major congenital abnormality. The incidence of acute and chronic illnesses was similar in all groups. Motor milestones were achieved on time, but the IVF/ICSI group had a slightly younger mean sitting age. None of the children had severe neurological problems. Conclusion(s): Five-year-old children born after PGD show normal growth, health, and motor development when compared with children born after IVF/ICSI and NC children from families with a genetic disorder. Trial registration number: NCT02149485

    Perinatal follow-up of children born after preimplantation genetic diagnosis between 1995 and 2014

    Get PDF
    Purpose We aim to evaluate the safety of PGD. We focus on the congenital malformation rate and additionally report on adverse perinatal outcome. Methods We collated data from a large group of singletons and multiples born after PGD between 1995 and 2014. Data on congenital malformation rates in live born children and terminated pregnancies, misdiagnosis rate, birth parameters, perinatal mortality, and hospital admissions were prospectively collected by questionnaires. Results Four hundred thirty-nine pregnancies in 381 women resulted in 364 live born children. Nine children (2.5%) had major malformations. This percentage is consistent with other PGD cohorts and comparable to the prevalence reported by the European Surveillance of Congenital Anomalies (EUROCAT). We reported one misdiagnosis resulting in a spontaneous abortion of a fetus with an unbalanced chromosome pattern. 20% of the children were born premature (<37 weeks) and less than 15% had a low birth weight. The incidence of hospital admissions is in line with prematurity and low birth weight rate. One child from a twin, one child from a triplet, and one singleton died at 23, 32, and 37 weeks of gestation respectively. Conclusions We found no evidence that PGD treatment increases the risk on congenital malformations or adverse perinatal outcome

    Diagnostic Gene Panel Testing in (Non)-Syndromic Patients with Cleft Lip, Alveolus and/or Palate in the Netherlands

    Get PDF
    Objectives: Clefts of the lip, alveolus and/or palate (CLA/P) are the most common craniofacial congenital malformations in humans. These oral clefts can be divided into non-syndromic (isolated) and syndromic forms. Many cleft-related syndromes are clinically variable and genetically heterogeneous, making it challenging to distinguish syndromic from non-syndromic cases. Recognition of syndromic/genetic causes is important for personalized tailored care, identification of (unrecognized) comorbidities, and accurate genetic counseling. Therefore, next generation sequencing (NGS)-based targeted gene panel testing is increasingly implemented in diagnostics of CLA/P patients. In this retrospective study, we assess the yield of NGS gene panel testing in a cohort of CLA/P cases. Methods: Whole exome sequencing (WES) followed by variant detection and interpretation in an a priori selected set of genes associated with CLA/P phenotypes was performed in 212 unrelated CLA/P patients after genetic counseling between 2015 and 2020. Medical records including family history and results of additional genetic tests were evaluated. Results: In 24 CLA/P cases (11.3%), a pathogenic genetic variant was identified. Twenty out of these 24 had a genetic syndrome requiring specific monitoring and follow-up. Six of these 24 cases (25%) were presumed to be isolated CLA/P cases prior to testing, corresponding to 2.8% of the total cohort. In eight CLA/P cases (3.8%) without a diagnosis after NGS-based gene panel testing, a molecular diagnosis was established by additional genetic analyses (e.g., SNP array, single gene testing, trio WES). Conclusion: This study illustrates NGS-based gene panel testing is a powerful diagnostic tool in the diagnostic workup of CLA/P patients. Also, in apparently isolated cases and non-familial cases, a genetic diagnosis can be identified. Early diagnosis facilitates personalized care for patients and accurate genetic counseling of their families.</p

    The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8

    Get PDF
    CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype–phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26–28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling

    The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction

    Get PDF
    International audiencePurpose: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit.Methods: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.Results: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly.Conclusion: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported

    The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction

    No full text
    PURPOSE: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. METHODS: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. RESULTS: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. CONCLUSION: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.status: Published onlin
    corecore