15 research outputs found

    May the Force Be With You: Unfolding Lipid-Protein Interactions By Single-Molecule Force Spectroscopy

    Get PDF
    In this issue of Structure, Serdiuk et al. report the use of single-molecule force microscopy to establish a role for phosphatidylethanolamine in promoting the native fold of lactose permease, thereby preventing it from populating a functionally defective, nonnative conformation (Serdiuk et al., 2015)

    Interactions of apomyoglobin with membranes: Mechanisms and effects on heme uptake

    No full text
    The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes

    Accessibility Changes within Diphtheria Toxin T Domainupon Membrane Penetration Probed by HydrogenExchange and Mass Spectrometry

    No full text
    International audienceThe translocation domain of diphtheria toxin inserts in membrane and becomes functional when the pH inside endosomes is acid. At that stage, the domain is in a partially folded state; this prevents the use of high-resolution methods for the characterization of its functional structure. On that purpose, we report here the use of hydrogen/deuterium exchange experiments coupled to mass spectrometry. The conformation changes during the different steps of insertion into lipid bilayer are monitored with a resolution of few residues. Three parts of the translocation domain can be distinguished. With a high protection against exchange, the C-terminal hydrophobic helical hairpin is embedded in the membrane. Despite a lower protection, a significant effect in the presence of lipid vesicles shows that the N-terminal part is in interaction with the membrane interface. The sensitivity to the ionic strength indicates that electrostatic interactions are important for the binding. The middle part of the domain has an intermediate protection; this suggests that this part of the domain can be embedded within the membrane but remains quite dynamic. These results provide unprecedented insight into the structure reorganization of the protein to go from a soluble state to a membrane-inserted one

    Membrane Interaction of Botulinum Neurotoxin ATranslocation (T) DomainTHE BELT REGION IS A REGULATORY LOOP FOR MEMBRANE INTERACTION

    No full text
    International audienceThe translocation of the catalytic domain through the membrane of the endosome to the cell cytoplasm is a key step of intoxication by botulinum neurotoxin (BoNT). This step is mediated by the translocation (T) domain upon endosome acidification, although the mechanism of interaction of the T domain with the membrane is still poorly understood. Using physicochemical approaches and spectroscopic methods, we studied the interaction of the BoNT/A T domain with the membrane as a function of pH. We found that the interaction with membranes does not involve major secondary or tertiary structural changes, as reported for other toxins like diphtheria toxin. The T domain becomes insoluble around its pI value and then penetrates into the membrane. At that stage, the T domain becomes able to permeabilize lipid vesicles. This occurs for pH values lower than 5.5, in agreement with the pH encountered by the toxin within endosomes. Electrostatic interactions are also important for the process. The role of the so-called belt region was investigated with four variant proteins presenting different lengths of the N-extremity of the T domain. We observed that this part of the T domain, which contains numerous negatively charged residues, limits the protein-membrane interaction. Indeed, interaction with the membrane of the protein deleted of this extremity takes place for higher pH values than for the entire T domain. Overall, the data suggest that acidification eliminates repulsive electrostatic interactions between the T domain and the membrane, allowing its penetration into the membrane without triggering detectable structural changes
    corecore