183 research outputs found
The Lower Extreminty Functional Test: Normative and Epidemiological Data in a Collegiate Female Athlete Population
How reliable are knee kinematics and kinetics during side-cutting manoeuvres?
INTRODUCTION: Side-cutting tasks are commonly used in dynamic assessment of ACL injury risk, but only limited information is available concerning the reliability of knee loading parameters. The aim of this study was to investigate the reliability of side-cutting data with additional focus on modelling approaches and task execution variables. METHODS: Each subject (n=8) attended six testing sessions conducted by two observers. Kinematic and kinetic data of 45° side-cutting tasks was collected. Inter-trial, inter-session, inter-observer variability and observer/trial ratios were calculated at every time-point of normalised stance, for data derived from two modelling approaches. Variation in task execution variables was regressed against that of temporal profiles of relevant knee data using one-dimensional statistical parametric mapping. RESULTS: Variability in knee kinematics was consistently low across the time-series waveform (≤5°), but knee kinetic variability was high (31.8, 24.1 and 16.9Nm for sagittal, frontal and transverse planes, respectively) in the weight acceptance phase of the side-cutting task. Calculations conveyed consistently moderate-to-good measurement reliability. Inverse kinematic modelling reduced the variability in sagittal (∼6Nm) and frontal planes (∼10Nm) compared to direct kinematic modelling. Variation in task execution variables did not explain any knee data variability. CONCLUSION: Side-cutting data appears to be reliably measured, however high knee moment variability exhibited in all planes, particularly in the early stance phase, suggests cautious interpretation towards ACL injury mechanics. Such variability may be inherent to the dynamic nature of the side-cutting task or experimental issues not yet known
Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review
Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes.
Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane’s ‘risk of bias’ tool.
Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs.
Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future
Influence of ultrasound machine settings on quantitative measures derived from spatial frequency analysis of muscle tissue
Background Ultrasound is a powerful tool for diagnostic purposes and provides insight into both normal and pathologic tissue structure. Spatial frequency analysis (SFA) methods characterize musculoskeletal tissue organization from ultrasound images. Both sonographers in clinical imaging and researchers may alter a minimized range of ultrasound settings to optimize image quality, and it is important to know how these small adjustments of these settings affect SFA parameters. The purpose of this study was to investigate the effects of making small adjustments in a typical default ultrasound machine setting on extracted spatial frequency parameters (peak spatial frequency radius (PSFR), Mmax, Mmax%, and Sum) in the biceps femoris muscle.
Methods Longitudinal B-mode images were collected from the biceps femoris muscle in 36 participants. The window depth, foci locations, and gain were systematically adjusted consistent with clinical imaging procedures for a total of 27 images per participant. Images were analyzed by identifying a region of interest (ROI) in the middle portion of the muscle belly in a template image and using a normalized two-dimensional cross-correlation technique between the template image and subsequent images. The ROI was analyzed in the frequency domain using conventional SFA methods. Separate linear mixed effects models were run for each extracted parameter.
Results PSFR was affected by modifications in focus location only (p \u3c 0.001) with differences noted between all locations. Mmax% was influenced by the interaction of gain and focus location (p \u3c 0.001) but was also independently affected by increasing window depth (p \u3c 0.001). Both Mmax and Sum parameters were sensitive to small changes in machine settings with the interaction of focus location and window depth (p \u3c 0.001 for both parameters) as well as window depth and gain (p \u3c 0.001 for both) influencing the extracted values.
Conclusions Frequently adjusted imaging settings influence some SFA statistics. PSFR and Mmax% appear to be most robust to small changes in image settings, making them best suited for comparison across individuals and between studies, which is appealing for the clinical utility of the SFA method
A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running
Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs
Dynamic 3D shape of the plantar surface of the foot using coded structured light:a technical report
The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input.
Methods
Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days.
Results
The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case).
Conclusion
The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environment
New Concepts A dynamical systems approach to lower extremity running injuries
Abstract In this paper, we are presenting an alternative approach to the investigation of lower extremity coupling referred to as a dynamical systems approach. In this approach, we calculate the phase angle of each segment and joint angle. Pairing the key segment/ joint motions, we use phase angles to determine the continuous relative phase and the variability of the continuous relative phase. Data from two studies illustrate the ecacy of the dynamical systems approach. Individuals who were asymptomatic, even though they may have anatomical aberrant structural problems (i.e. high Q-angle vs low Q-angle) showed no dierences in the pattern of the continuous relative phase or in the variability of the continuous phase. However, dierences in the variability of the continuous relative phase were apparent in comparing individuals who were symptomatic with patellofemoral pain with non-injured individuals. Patellofemoral pain individuals showed less variability in the continuous relative phase of the lower extremity couplings than did the healthy subjects. We hypothesize that the lower variability of the couplings in the symptomatic individuals indicates repeatable joint actions within a very narrow range. Relevance We claim that the traditional view of the variability of disordered movement is not tenable and suggest that there is a functional role for variability in lower extremity segment coupling during locomotion. While the methods described in this paper cannot determine a cause of the injury, they may be useful in the detection and treatment of running injuries.
International Olympic Committee consensus statement on pain management in elite athletes
Pain is a common problem among elite athletes and is frequently associated with sport injury. Both pain and injury interfere with the performance of elite athletes. There are currently no evidence-based or consensus-based guidelines for the management of pain in elite athletes. Typically, pain management consists of the provision of analgesics, rest and physical therapy. More appropriately, a treatment strategy should address all contributors to pain including underlying pathophysiology, biomechanical abnormalities and psychosocial issues, and should employ therapies providing optimal benefit and minimal harm. To advance the development of a more standardised, evidence-informed approach to pain management in elite athletes, an IOC Consensus Group critically evaluated the current state of the science and practice of pain management in sport and prepared recommendations for a more unified approach to this important topic
STepped exercise program for patients with knee OsteoArthritis (STEP-KOA): protocol for a randomized controlled trial
Background:
Physical therapy (PT) and other exercise-based interventions are core components of care for knee osteoarthritis (OA), but both are underutilized, and some patients have limited access to PT services. This clinical trial is examining a STepped Exercise Program for patients with Knee OsteoArthritis (STEP-KOA). This model of care can help to tailor exercise-based interventions to patient needs and also conserve higher resource services (such as PT) for patients who do not make clinically relevant improvements after receiving less costly interventions.
Methods / Design:
Step-KOA is a randomized trial of 345 patients with symptomatic knee OA from two Department of Veterans Affairs sites. Participants are randomized to STEP-KOA and Arthritis Education (AE) Control groups with a 2:1 ratio, respectively. STEP-KOA begins with 3 months of access to an internet-based exercise program (Step 1). Participants not meeting response criteria for clinically meaningful improvement in pain and function after Step 1 progress to Step 2, which involves bi-weekly physical activity coaching calls for 3 months. Participants not meeting response criteria after Step 2 progress to in-person PT visits (Step 3). Outcomes will be assessed at baseline, 3, 6 and 9 months (primary outcome time point). The primary outcome is the Western Ontario and McMasters Universities Osteoarthritis Index (WOMAC), and secondary outcomes are objective measures of physical function. Linear mixed models will compare outcomes between the STEP-KOA and AE control groups at follow-up. We will also evaluate patient characteristics associated with treatment response and conduct a cost-effectiveness analysis of STEP-KOA.
Discussion:
STEP-KOA is a novel, efficient and patient-centered approach to delivering exercise-based interventions to patients with knee OA, one of the most prevalent and disabling health conditions. This trial will provide information on the effectiveness of STEP-KOA as a novel potential model of care for treatment of OA
The natural history and management of hamstring injuries
Hamstring injuries in sport can be debilitating. The anatomical complexity of this muscle makes uniform assessment of injury epidemiology difficult and insures that post-injury management strategies must be individually focused. This article reviews the anatomy of the hamstring, its role in athletic movement, common mechanisms of injury, and management guidelines with the goal of return into sporting activity in mind
- …
