145 research outputs found

    Baffin Bay Narwhal Population Distribution and Numbers: Aerial Surveys in the Canadian High Arctic, 2002–04

    Get PDF
    Aerial surveys of narwhals (Monodon monoceros) were conducted in the Canadian High Arctic during the month of August from 2002 to 2004. The surveys covered the waters of Barrow Strait, Prince Regent Inlet, the Gulf of Boothia, Admiralty Inlet, Eclipse Sound, and the eastern coast of Baffin Island, using systematic sampling methods. Fiords were flown along a single transect down the middle. Near-surface population estimates increased by 1.9 %– 8.7% when corrected for perception bias. The estimates were further increased by a factor of approximately 3, to account for individuals not seen because they were diving when the survey plane flew over (availability bias). These corrections resulted in estimates of 27 656 (SE = 14 939) for the Prince Regent and Gulf of Boothia area, 20 225 (SE = 7285) for the Eclipse Sound area, and 10 073 (SE = 3123) for the East Baffin Island fiord area. The estimate for the Admiralty Inlet area was 5362 (SE = 2681) but is thought to be biased. Surveys could not be done in other known areas of occupation, such as the waters of the Cumberland Peninsula of East Baffin, and channels farther west of the areas surveyed (Peel Sound, Viscount Melville Sound, Smith Sound and Jones Sound, and other channels of the Canadian Arctic archipelago). Despite these probable biases and the incomplete coverage, results of these surveys show that the summering range of narwhals in the Canadian High Arctic is vast. If narwhals are philopatri to their summering areas, as they appear to be, the total population of that range could number more than 60 000 animals. The largest numbers are in the western portion of their summer range, around Somerset Island, and also in the Eclipse Sound area. However, these survey estimates have large variances due to narwhal aggregation in some parts of the surveyed areas.Des levĂ©s aĂ©riens ont Ă©tĂ© effectuĂ©s dans l’ExtrĂȘme arctique canadien dans le but de rĂ©pertorier les populations de narvals (Monodon monoceros) et ce, du mois d’aoĂ»t 2002 Ă  aoĂ»t 2004. Les levĂ©s, rĂ©alisĂ©s Ă  l’aide de mĂ©thodes d’échantillonnage systĂ©miques, visaient les eaux du dĂ©troit de Barrow, de l’inlet Prince-RĂ©gent, du golfe de Boothia, de l’inlet de l’AmirautĂ©, du dĂ©troit d’Éclipse et de la cĂŽte est de l’üle de Baffin. Les fiords ont Ă©tĂ© survolĂ©s le long d’un simple transect situĂ© dans le milieu. Les estimations de population prĂšs de la surface augmentaient de 1,9 % Ă  8,7 % une fois redressĂ©es pour tenir compte du biais de perception. Par ailleurs, les estimations ont Ă©tĂ© de nouveau rĂ©visĂ©es Ă  la hausse moyennant un facteur d’environ 3 afin de tenir compte des individus qui n’ont pas Ă©tĂ© vus parce qu’ils se mettaient Ă  plonger en prĂ©sence de l’avion effectuant les levĂ©s (biais de disponibilitĂ©). Ces redressements ont donnĂ© lieu Ă  des estimations de 27 656 (SE = 14 939) pour la rĂ©gion de l’inlet Prince-RĂ©gent et du golfe de Boothia, de 20 225 (SE = 7 285) pour la rĂ©gion du dĂ©troit d’Éclipse et de 10 073 (SE = 3 123) pour la rĂ©gion du fiord de l’est de l’üle de Baffin. Quand Ă  l’inlet de l’AmirautĂ©, l’estimation s’est chiffrĂ©e Ă  5 362 (SE = 2 681), mais l’on croit que cette estimation pourrait ĂȘtre biaisĂ©e. Des levĂ©s n’ont pas pu ĂȘtre effectuĂ©s dans d’autres zones d’occupation connues, comme dans les eaux de la pĂ©ninsule Cumberland dans l’est de Baffin de mĂȘme que dans les chenaux plus Ă  l’ouest des rĂ©gions examinĂ©es (dĂ©troit de Peel, dĂ©troit du Vicomte de Melville, dĂ©troit de Smith, dĂ©troit de Jones et d’autres chenaux de l’archipel Arctique canadien). MalgrĂ© la possibilitĂ© que les donnĂ©es soient biaisĂ©es et que certaines zones n’aient pas Ă©tĂ© examinĂ©es, les rĂ©sultats de ces levĂ©s montrent que la rĂ©partition d’étĂ© des narvals dans l’ExtrĂȘme arctique canadien est vaste. Si les narvals sont philopatriques Ă  leurs aires d’étĂ©, comme il semblerait ĂȘtre le cas, la population totale de ce parcours pourrait dĂ©passer les 60 000 individus. Les plus grands nombres se trouvent dans la partie ouest de cette rĂ©partition, soit prĂšs de l’üle Somerset et dans la rĂ©gion du dĂ©troit d’Éclipse. Cependant, les estimations dĂ©coulant de ces levĂ©s ont de grandes variances en raison du regroupement des narvals dans certaines parties des rĂ©gions visĂ©es par les levĂ©s

    Investigation and implications of spatial and temporal patterns in sex ratio data from West Greenland minke whale catches.

    Get PDF
    The sub-group based its deliberations on the computations set out below, which were carried out by Givens following input from sub-group members

    Accuracy of the Aspartic Acid Racemization Technique in Age Estimation of Mammals and the Influence of Body Temperature

    Get PDF
    The aspartic acid racemization (AAR) technique has been applied for age estimation of humans and other mammals for more than four decades. In this study, eye lenses from 124 animals representing 25 mammalian species were collected and D/L ratios obtained using the AAR technique. The animals were either of known age or had the age estimated by other methods. The purpose of the study was to: a) estimate the accuracy of the AAR technique, and b) examine the effect of body temperature on racemization rates. Samples from four of the 25 species covered the range of ages that is needed to estimate species-specific racemization rates. The sample size from a single species of known age, the pygmy goat (Capra hircus, n = 35), was also large enough to investigate the accuracy of ages obtained using the AAR technique. The 35 goats were divided into three datasets: all goats (n = 35), goats >0.5 yrs old (n = 26) and goats >2 yrs old (n = 19). Leave-one-out analyses were performed on the three sets of data. Normalized root mean squared errors for the group of goats >0.5 yrs old were found to be the smallest. The higher variation in D/L measurements found for young goats 0.5 yrs old was for three age groups of the goats: 0.934 yrs for young goats 8 yrs (n = 4). Thus, the age of an adult or an old animal can be predicted with approximately 10% accuracy, whereas the age of a young animal is difficult to predict. A goat specific racemization rate, as a 2kAsp value, was estimated to 0.0107 ± 3.8 x 10-4 SE (n = 26). The 2kAsp values from 12 species, four estimated in this study and another eight published, were used to examine the effect of core body temperature on the rate of racemization. A positive relationship between AAR and temperature was found (r2 = 0.321) but results also suggest that other factors besides temperature are involved in the racemization process in living animals. Based on our results we emphasize that non-species-specific racemization rates should be used with care in AAR age estimation studies and that the period of postnatal growth of the eye lens be considered when estimating species-specific D/L0 values and ages of young individuals

    Two techniques of age estimation in cetaceans: GLGs in teeth and earplugs, and measuring the AAR rate in eye lens nucleus

    Get PDF
    The ages of three species of cetaceans were estimated by counting the growth layer groups (GLG) and measuring the aspartic acid racemization rate (kAsp) by what is referred to as the Aspartic Acid Racemization (AAR) technique. Data on kAsp and the D/L ratio of aspartic acid at birth [(D/L)0] in North Atlantic common minke whales (Balaenoptera acutorostrata) are presented along with data on fin whales (B. physalus) and harbour porpoises (Phocoena phocoena) already published by Nielsen et al. (2012). The kAsp specific for minke whales was 1.40 x 10-3 yr-1 (SE ± 0.00005) and the (D/L)0 was 0.0194 (SE ± 0.0012). The correlation of GLG age and D/L ratio for all three species was highly significant; however, the correlation coefficient varied greatly (fin whales: R2 = 0.59, p <0.0001; minke whales: ­R2=0.96, P <0.0001; harbour porpoises: ­R2=0.36, P <0.0001). Asymptotic body length for all three species was estimated by a von Bertalanffy growth model on both the GLG and AAR techniques, and showed no difference

    Liturgijski vid naputka Ad resurgendum cum Christo

    Get PDF
    This study was funded by the Greenland Bureau of Minerals and Petroleum, the Danish Cooperation of the Environment in the Arctic (DANCEA, Danish Ministry of the Environment) and the Greenland Institute of Natural Resources.Decisions about sustainable exploitation levels of marine resources are often based on inadequate data, but are nevertheless required for practical purposes. We describe one exception where abundance estimates spanning 30 years and catch data spanning more than 40 years were used in a Bayesian assessment model of belugas Delphinapterus leucas off West Greenland. The model was updated with data from a visual aerial survey on the wintering ground in 2012. Methods that take account of stochastic animal availability by using independent estimates of forward and perpendicular sighting distances were used to estimate beluga abundance. A model that appears to be robust to the presence of a few large groups yielded an estimate of 7456 belugas (cv = 0.44), similar to a conventional distance-sampling estimate. A mark–recapture distance analysis that corrects for perception and availability bias estimated the abundance to be 9072 whales (cv = 0.32). Increasing distance of beluga sightings from shore was correlated with decreasing sea ice cover, suggesting that belugas expand their distribution offshore (i.e. westward in this context) with the reduction of coastal sea ice. A model with high (0.98) adult survival estimated a decline from 18 600 (90% CI: 13 400, 26 000) whales in 1970 to 8000 (90% CI: 5830, 11 200) in 2004. The decline was probably a result of a period with exceptionally large catches. Following the introduction of catch limits in 2004, the model projects an increase to 11 600 (90% CI: 6760, 17 600) individuals in 2020 (assuming annual removals of 294 belugas after 2014). If the annual removal level is fixed at 300 individuals, a low-survival (0.97) model predicts a 75% probability of an increasing population during 2015–2020. Reduced removal rates due to catch limits and the more offshore, less accessible distribution of the whales are believed to be responsible for the initial signs of population recovery.Publisher PDFPeer reviewe

    Building Mesoarchaean crust upon Eoarchaean roots : the Akia Terrane, West Greenland

    Get PDF
    The Maniitsoq project is supported by the Ministry of Mineral Resources and Labour, Government of Greenland. NJG thanks Curtin University and Australian Research Council grant FL160100168 for financial support.Constraining the source, genesis, and evolution of Archaean felsic crust is key to understanding the growth and stabilization of cratons. The Akia Terrane, part of the North Atlantic Craton, West Greenland, is comprised of Meso-to-Neoarchaean orthogneiss, with associated supracrustal rocks. We report zircon U–Pb and Lu–Hf isotope data, and whole-rock geochemistry, from samples of gneiss and supracrustals from the northern Akia Terrane, including from the Finnefjeld Orthogneiss Complex, which has recently been interpreted as an impact structure. Isotope data record two major episodes of continental crust production at ca. 3.2 and 3.0 Ga. Minor ca. 2.7 and 2.5 Ga magmatic events have more evolved ΔHf, interpreted as reworking of existing crust perhaps linked to terrane assembly. Felsic rocks from the Finnefjeld Orthogneiss Complex were derived from the same source at the same time as the surrounding tonalites, but from shallower melting, requiring any bolide-driven melting event to have occurred almost simultaneously alongside the production of the surrounding crust. A simpler alternative has the Finnefjeld Complex and surrounding tonalite representing the coeval genesis of evolved crust over a substantial lithospheric depth. Hafnium isotope data from the two major Mesoarchaean crust-forming episodes record a contribution from older mafic Eoarchaean crust. Invoking the involvement of an Eoarchaean root in the growth of younger Mesoarchaean crust puts important constraints on geodynamic models of the formation of the discrete terranes that ultimately assembled to form Earth’s cratons.Publisher PDFPeer reviewe

    Multi-year patterns in testosterone, cortisol and corticosterone in baleen from adult males of three whale species

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 6 (2018): coy049, doi:10.1093/conphys/coy049.Male baleen whales have long been suspected to have annual cycles in testosterone, but due to difficulty in collecting endocrine samples, little direct evidence exists to confirm this hypothesis. Potential influences of stress or adrenal stress hormones (cortisol, corticosterone) on male reproduction have also been difficult to study. Baleen has recently been shown to accumulate steroid hormones during growth, such that a single baleen plate contains a continuous, multi-year retrospective record of the whale’s endocrine history. As a preliminary investigation into potential testosterone cyclicity in male whales and influences of stress, we determined patterns in immunoreactive testosterone, two glucocorticoids (cortisol and corticosterone), and stable-isotope (SI) ratios, across the full length of baleen plates from a bowhead whale (Balaena mysticetus), a North Atlantic right whale (Eubalaena glacialis) and a blue whale (Balaenoptera musculus), all adult males. Baleen was subsampled at 2 cm (bowhead, right) or 1 cm (blue) intervals and hormones were extracted from baleen powder with methanol, followed by quantification of all three hormones using enzyme immunoassays validated for baleen extract of these species. Baleen of all three males contained regularly spaced peaks in testosterone content, with number and spacing of testosterone peaks corresponding well to SI data and to species-specific estimates of annual baleen growth rate. Cortisol and corticosterone exhibited some peaks that co-occurred with testosterone peaks, while other glucocorticoid peaks occurred independent of testosterone peaks. The right whale had unusually high glucocorticoids during a period with a known entanglement in fishing gear and a possible disease episode; in the subsequent year, testosterone was unusually low. Further study of baleen testosterone patterns in male whales could help clarify conservation- and management-related questions such as age of sexual maturity, location and season of breeding, and the potential effect of anthropogenic and natural stressors on male testosterone cycles.This work was supported by (1) the Arizona Board of Regents Technology Research Initiative Fund; (2) the Center for Bioengineering Innovation at Northern Arizona University; (3) the Greenland Institute of Natural Resources; (4) the Woods Hole Oceanographic Institution Ocean Life Institute and (5) Fisheries and Ocean Canada’s (DFO) Priorities and Partnership Strategic Initiatives Fund and Oceans Protection Plan

    Abundance of whales in West and East Greenland in summer 2015

    Get PDF
    An aerial line transect survey of whales in West and East Greenland was conducted in August-September 2015. The survey covered the area between the coast of West Greenland and offshore (up to 100 km) to the shelf break. In East Greenland, the survey lines covered the area from the coast up to 50 km offshore crossing the shelf break. A total of 423 sightings of 12 cetacean species were obtained and abundance estimates were developed for common minke whale, (Balaenoptera acutorostrata) (32 sightings), fin whale (Balaenoptera physalus) (129 sightings), humpback whale (Megaptera novaeangliae) (84 sightings), harbour porpoise (Phocoena phocoena) (55 sightings), long-finned pilot whale, (Globicephala melas) (42 sightings) and white-beaked dolphin (Lagenorhynchus albirostri) (50 sightings). The developed at-surface abundance estimates were corrected for both perception bias and availability bias if possible. Data on surface corrections for minke whales and harbour porpoises were collected from whales instrumented with satellite-linked time-depth-recorders. Options for estimation methods are presented and the preferred estimates are: minke whales: 5,095 (95% CI: 2,171-11,961) in West Greenland and 2,762 (95% CI: 1,160-6,574) in East Greenland, fin whales: 2,215 (95% CI: 1,017-4,823) in West Greenland and 6,440 (95% CI: 3,901-10,632) in East Greenland, humpback whales: 993 (95% CI: 434-2,272) in West Greenland and 4,223 (95% CI: 1,845-9,666) in East Greenland, harbour porpoises: 83,321 (95% CI: 43,377-160,047) in West Greenland and 1,642 (95% CI: 319-8,464) in East Greenland, pilot whales: 9,190 (95% CI: 3,635-23,234) in West Greenland and 258 (95% CI: 50-1,354) in East Greenland, white-beaked dolphins 15,261 (95% CI: 7,048-33,046) in West Greenland and 11,889 (95% CI: 4,710-30,008) in East Greenland. The abundance of cetaceans in coastal areas of East Greenland has not been estimated before, but the limited historical information from the area indicates that the achieved abundance estimates were remarkably high. When comparing the abundance estimates from 2015 in West Greenland with a similar survey conducted in 2007, there is a clear trend towards lower densities in 2015 for the three baleen whale species and white-beaked dolphins. Harbour porpoises and pilot whales, however, did not show a similar decline. The decline in baleen whale and white-beaked dolphin abundance is likely due to emigration to the East Greenland shelf areas where recent climate driven changes in pelagic productivity may have accelerated favourable conditions for these species

    Evaluating the Influence of Epidemiological Parameters and Host Ecology on the Spread of Phocine Distemper Virus through Populations of Harbour Seals

    Get PDF
    Catriona Harris was supported by a grant from the UK Natural Environment Research Council. The funders had no role in study design, data collections and analysis, decision to publish, or preparation of the manuscript.Background: Outbreaks of phocine distemper virus (PDV) in Europe during 1988 and 2002 were responsible for the death of around 23,000 and 30,000 harbour seals, respectively. These epidemics, particularly the one in 2002, provided an unusual opportunity to estimate epidemic parameters for a wildlife disease. There were marked regional differences in the values of some parameters both within and between epidemics. Methodology and Principal Findings: We used an individual-based model of seal movement that allowed us to incorporate realistic representations of space, time and animal behaviour into a traditional epidemiological modelling framework. We explored the potential influence of a range of ecological (foraging trip duration, time of epidemic onset, population size) and epidemiological (length of infectious period, contact rate between infectious and susceptible individuals, case mortality) parameters on four readily-measurable epidemic characteristics (number of dead individuals, duration of epidemic, peak mortality date and prevalence) and on the probability that an epidemic would occur in a particular region. We analysed the outputs as if they were the results of a series of virtual experiments, using Generalised Linear Modelling. All six variables had a significant effect on the probability that an epidemic would be recognised as an unusual mortality event by human observers. Conclusions: Regional and temporal variation in contact rate was the most likely cause of the observed differences between the two epidemics. This variation could be a consequence of differences in the way individuals divide their time between land and sea at different times of the year.Publisher PDFPeer reviewe
    • 

    corecore