76 research outputs found

    Ibrutinib Plus Rituximab Versus Placebo Plus Rituximab for Waldenström’s Macroglobulinemia: Final Analysis From the Randomized Phase III iNNOVATE Study

    Get PDF
    [Purpose]: The double-blind, randomized, placebo-controlled phase III iNNOVATE study showed sustained efficacy of ibrutinib-rituximab in Waldenström's macroglobulinemia (WM). Here, we present the final analysis from iNNOVATE. [Methods]: Patients had confirmed symptomatic WM, either previously untreated or previously treated; patients with prior rituximab had at least a minor response to their last rituximab-based regimen. Patients were randomly assigned to once-daily ibrutinib 420 mg plus rituximab or placebo plus rituximab (n = 75 per arm). The primary end point was progression-free survival (PFS). Secondary end points included response rate, time to next treatment, hemoglobin improvement, overall survival, and safety. [Results]: With a median follow-up of 50 (range, 0.5-63) months, median (95% CI) PFS was not reached (57.7 months to not evaluable) with ibrutinib-rituximab versus 20.3 months (13.0 to 27.6) with placebo-rituximab (hazard ratio, 0.250; P < .0001). PFS benefit was regardless of prior treatment status, MYD88 and CXCR4 mutation status, or key patient characteristics. Higher response rates (partial response or better) were observed with ibrutinib-rituximab (76% v 31% with placebo-rituximab; P < .0001) and were sustained over time. Median time to next treatment was not reached with ibrutinib-rituximab versus 18 months with placebo-rituximab. More patients receiving ibrutinib-rituximab versus placebo-rituximab had sustained hemoglobin improvement (77% v 43%; P < .0001). Median overall survival was not reached in either arm. Ibrutinib-rituximab maintained a manageable safety profile; the prevalence of grade ≥ 3 adverse events of clinical interest generally decreased over time. [Conclusion]: In the final analysis of iNNOVATE with a median follow-up of 50 months, ibrutinib-rituximab showed ongoing superiority across clinical outcomes in patients with WM regardless of MYD88 or CXCR4 mutation status, prior treatment, and key patient characteristics.Supported by Pharmacyclics LLC, an AbbVie Company. Pharmacyclics LLC sponsored and designed the study.Peer reviewe

    Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay

    Full text link
    The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta (0νββ0\nu\beta\beta) decay in 136^{136}Xe with a target half-life sensitivity of approximately 102810^{28} years using 5×1035\times10^3 kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the 136^{136}Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates.Comment: v2 as publishe

    Characterization of an Ionization Readout Tile for nEXO

    Full text link
    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} ×\times 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207^{207}Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E\sigma/E=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe

    Plain Language Summary of the iNNOVATE study: ibrutinib plus rituximab is well-tolerated and effective in people with Waldenström's macroglobulinemia

    Get PDF
    This article provides a short summary of 5-year results from the iNNOVATE trial. The original paper was published in the Journal of Clinical Oncology in October 2021. People with Waldenström's macroglobulinemia (WM) were randomly divided into two groups of 75 people each. One group received a combination treatment composed of two drugs, ibrutinib plus rituximab, and the other group took placebo (“sugar pill”) plus rituximab. Ibrutinib (also known by the brand name Imbruvica®) is a drug that reduces cancer cells' ability to multiply and survive. Ibrutinib is an FDA-approved drug for the treatment of WM. Rituximab is a drug that helps the immune system find and kill cancer cells. Participants in the trial were treated and their health monitored for up to 5 years (63 months).Editorial support for development of this summary was provided by Cindi A. Hoover, PhD, and was funded by Pharmacyclics LLC, an AbbVie Company.Peer reviewe
    corecore