36 research outputs found

    Natively fat-suppressed 5D whole-heart MRI with a radial free-running fast-interrupted steady-state (FISS) sequence at 1.5T and 3T.

    Get PDF
    To implement, optimize, and test fast interrupted steady-state (FISS) for natively fat-suppressed free-running 5D whole-heart MRI at 1.5 tesla (T) and 3T. FISS was implemented for fully self-gated free-running cardiac- and respiratory-motion-resolved radial imaging of the heart at 1.5T and 3T. Numerical simulations and phantom scans were performed to compare fat suppression characteristics and to determine parameter ranges (number of readouts [NR] per FISS module and TR) for effective fat suppression. Subsequently, free-running FISS data were collected in 10 healthy volunteers and images were reconstructed with compressed sensing. All acquisitions were compared with a continuous balanced steady-state free precession version of the same sequence, and both fat suppression and scan times were analyzed. Simulations demonstrate a variable width and location of suppression bands in FISS that were dependent on TR and NR. For a fat suppression bandwidth of 100 Hz and NR ≤ 8, simulations demonstrated that a TR between 2.2 ms and 3.0 ms is required at 1.5T, whereas a range of 3.0 ms to 3.5 ms applies at 3T. Fat signal increases with NR. These findings were corroborated in phantom experiments. In volunteers, fat SNR was significantly decreased using FISS compared with balanced steady-state free precession (P < 0.05) at both field strengths. After protocol optimization, high-resolution (1.1 mm <sup>3</sup> ) 5D whole-heart free-running FISS can be performed with effective fat suppression in under 8 min at 1.5T and 3T at a modest scan time increase compared to balanced steady-state free precession. An optimal FISS parameter range was determined enabling natively fat-suppressed 5D whole-heart free-running MRI with a single continuous scan at 1.5T and 3T, demonstrating potential for cardiac imaging and noncontrast angiography

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    A quantitative comparison between a navigated Cartesian and a self-navigated radial protocol from clinical studies for free-breathing 3D whole-heart bSSFP coronary MRA.

    No full text
    Navigator-gated 3D bSSFP whole-heart coronary MRA has been evaluated in several large studies including a multi-center trial. Patient studies have also been performed with more recent self-navigated techniques. In this study, these two approaches are compared side-by-side using a Cartesian navigator-gated and corrected (CNG) and a 3D radial self-navigated (RSN) protocol from published patient studies. Sixteen healthy subjects were examined with both sequences on a 1.5T scanner. Assessment of the visibility of coronary ostia and quantitative comparisons of acquisition times, blood pool homogeneity, and visible length and sharpness of the right coronary artery (RCA) and the combined left main (LM)+left anterior descending (LAD) coronary arteries were performed. Paired sample t-tests with P < .05 considered statistically significant were used for all comparisons. The acquisition time was 5:40 ± 0:28 min (mean ± SD) for RSN, being significantly shorter than the 16:59 ± 5:05 min of CNG (P < .001). RSN images showed higher blood pool homogeneity (P < .001). All coronary ostia were visible with both techniques. CNG provided significantly higher vessel sharpness in the RCA (CNG: 50.0 ± 8.6%, RSN: 34.2 ± 6.9%, P < .001) and the LM+LAD (CNG: 48.7 ± 6.7%, RSN: 32.3 ± 7.1%, P < .001). The visible vessel length was significantly longer in the LM+LAD using CNG (CNG: 9.8 ± 2.7 cm, RSN: 8.5 ± 2.6 cm, P < .05) but not in the RCA (CNG: 9.7 ± 2.3 cm, RSN: 9.3 ± 2.9 cm, P = .29). CNG provided superior vessel sharpness and might hence be the better option for examining coronary lumina. However, its blood pool inhomogeneity and prolonged and unpredictable acquisition times compared to RSN may make clinical adoption more challenging

    Motion compensated whole-heart coronary cardiovascular magnetic resonance angiography using focused navigation (fNAV).

    No full text
    Radial self-navigated (RSN) whole-heart coronary cardiovascular magnetic resonance angiography (CCMRA) is a free-breathing technique that estimates and corrects for respiratory motion. However, RSN has been limited to a 1D rigid correction which is often insufficient for patients with complex respiratory patterns. The goal of this work is therefore to improve the robustness and quality of 3D radial CCMRA by incorporating both 3D motion information and nonrigid intra-acquisition correction of the data into a framework called focused navigation (fNAV). We applied fNAV to 500 data sets from a numerical simulation, 22 healthy subjects, and 549 cardiac patients. In each of these cohorts we compared fNAV to RSN and respiratory resolved extradimensional golden-angle radial sparse parallel (XD-GRASP) reconstructions of the same data. Reconstruction times for each method were recorded. Motion estimate accuracy was measured as the correlation between fNAV and ground truth for simulations, and fNAV and image registration for in vivo data. Percent vessel sharpness was measured in all simulated data sets and healthy subjects, and a subset of patients. Finally, subjective image quality analysis was performed by a blinded expert reviewer who chose the best image for each in vivo data set and scored on a Likert scale 0-4 in a subset of patients by two reviewers in consensus. The reconstruction time for fNAV images was significantly higher than RSN (6.1 ± 2.1 min vs 1.4 ± 0.3, min, p < 0.025) but significantly lower than XD-GRASP (25.6 ± 7.1, min, p < 0.025). Overall, there is high correlation between the fNAV and reference displacement estimates across all data sets (0.73 ± 0.29). For simulated data, healthy subjects, and patients, fNAV lead to significantly sharper coronary arteries than all other reconstruction methods (p < 0.01). Finally, in a blinded evaluation by an expert reviewer fNAV was chosen as the best image in 444 out of 571 data sets (78%; p < 0.001) and consensus grades of fNAV images (2.6 ± 0.6) were significantly higher (p < 0.05) than uncorrected (1.7 ± 0.7), RSN (1.9 ± 0.6), and XD-GRASP (1.8 ± 0.8). fNAV is a promising technique for improving the quality of RSN free-breathing 3D whole-heart CCMRA. This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well as XD-GRASP reconstructions. Further study of the diagnostic impact of this technique is therefore warranted to evaluate its full clinical utility

    Similarity-driven multi-dimensional binning algorithm (SIMBA) for free-running motion-suppressed whole-heart MRA.

    No full text
    Whole-heart MRA techniques typically target predetermined motion states, address cardiac and respiratory dynamics independently, and require either complex planning or computationally demanding reconstructions. In contrast, we developed a fast data-driven reconstruction algorithm with minimal physiological assumptions and compatibility with ungated free-running sequences. We propose a similarity-driven multi-dimensional binning algorithm (SIMBA) that clusters continuously acquired k-space data to find a motion-consistent subset for whole-heart MRA reconstruction. Free-running 3D radial data sets from 12 non-contrast-enhanced scans of healthy volunteers and six ferumoxytol-enhanced scans of pediatric cardiac patients were reconstructed with non-motion-suppressed regridding of all the acquired data ("All Data"), with SIMBA, and with a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium sharpness and contrast ratio, visibility of coronary artery ostia, and right coronary artery sharpness. Both the 20-second SIMBA reconstruction and FRF provided significantly higher blood-myocardium sharpness than All Data in both patients and volunteers (P < .05). The SIMBA reconstruction provided significantly sharper blood-myocardium interfaces than FRF in volunteers (P < .001) and higher blood-myocardium contrast ratio than All Data and FRF, both in volunteers and patients (P < .05). Significantly more ostia could be visualized with both SIMBA (31 of 36) and FRF (34 of 36) than with All Data (4 of 36) (P < .001). Inferior right coronary artery sharpness using SIMBA versus FRF was observed (volunteers: SIMBA 36.1 ± 8.1%, FRF 40.4 ± 8.9%; patients: SIMBA 35.9 ± 7.7%, FRF 40.3 ± 6.1%, P = not significant). The SIMBA technique enabled a fast, data-driven reconstruction of free-running whole-heart MRA with image quality superior to All Data and similar to the more time-consuming FRF reconstruction

    Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease and Risk of Acquiring Streptococcus pneumoniae Infection. A Multiregional Epidemiological Study

    Get PDF
    Background: Inhaled corticosteroids (ICS) are associated with an increased risk of clinical pneumonia among patients with chronic obstructive pulmonary disease (COPD). It is unknown whether the risk of microbiologically verified pneumonia such as pneumococcal pneumonia is increased in ICS users. Methods: The study population consists of all COPD patients followed in outpatient clinics in eastern Denmark during 2010-2017. ICS use was categorized into four categories based on accumulated use. A Cox proportional hazard regression model was used adjusting for age, body mass index, sex, airflow limitation, use of oral corticosteroids, smoking, and year of cohort entry. A propensity score matched analysis was performed for sensitivity analyses. Findings:  A total of 21,438 patients were included. Five hundred and eighty-two (2.6%) patients acquired a positive lower airway tract sample with S. pneumoniae during follow-up. In the multivariable analysis ICS-use was associated with a dose-dependent risk of S. pneumoniae as follows: low ICS dose: HR 1.11, 95% CI 0.84 to 1.45, p = 0.5; moderate ICS dose: HR 1.47, 95% CI 1.13 to 1.90, p = 0.004; high ICS dose: HR 1.77, 95% CI 1.38 to 2.29, p < 0.0001, compared to no ICS use. Sensitivity analyses confirmed these results. Interpretation: Use of ICS in patients with severe COPD was associated with an increased and dose-dependent risk of acquiring S. pneumoniae, but only for moderate and high dose. Caution should be taken when administering high dose of ICS to patients with COPD. Low dose of ICS seemed not to carry this risk

    Correcting versus resolving respiratory motion in free-breathing whole-heart MRA: a comparison in patients with thoracic aortic disease.

    Get PDF
    Whole-heart magnetic resonance angiography (MRA) requires sophisticated methods accounting for respiratory motion. Our purpose was to evaluate the image quality of compressed sensing-based respiratory motion-resolved three-dimensional (3D) whole-heart MRA compared with self-navigated motion-corrected whole-heart MRA in patients with known thoracic aorta dilation. Twenty-five patients were prospectively enrolled in this ethically approved study. Whole-heart 1.5-T MRA was acquired using a prototype 3D radial steady-state free-precession free-breathing sequence. The same data were reconstructed with a one-dimensional motion-correction algorithm (1D-MCA) and an extradimensional golden-angle radial sparse parallel reconstruction (XD-GRASP). Subjective image quality was scored and objective image quality was quantified (signal intensity ratio, SIR; vessel sharpness). Wilcoxon, McNemar, and paired t tests were used. Subjective image quality was significantly higher using XD-GRASP compared to 1D-MCA (median 4.5, interquartile range 4.5-5.0 versus 4.0 [2.25-4.75]; p &lt; 0.001), as well as signal homogeneity (3.0 [3.0-3.0] versus 2.0 [2.0-3.0]; p = 0.003), and image sharpness (3.0 [2.0-3.0] vs 2.0 [1.25-3.0]; p &lt; 0.001). SIR with the 1D-MCA and XD-GRASP was 6.1 ± 3.9 versus 7.4 ± 2.5, respectively (p &lt; 0.001); while signal homogeneity was 274.2 ± 265.0 versus 199.8 ± 67.2 (p = 0.129). XD-GRASP provided a higher vessel sharpness (45.3 ± 10.7 versus 40.6 ± 101, p = 0.025). XD-GRASP-based motion-resolved reconstruction of free-breathing 3D whole-heart MRA datasets provides improved image contrast, sharpness, and signal homogeneity and seems to be a promising technique that overcomes some of the limitations of motion correction or respiratory navigator gating

    Measurement accuracy of prototype non-contrast, compressed sensing-based, respiratory motion-resolved whole heart cardiovascular magnetic resonance angiography for the assessment of thoracic aortic dilatation: comparison with computed tomography angiography.

    No full text
    Patients with thoracic aortic dilatation who undergo annual computed tomography angiography (CTA) are subject to repeated radiation and contrast exposure. The purpose of this study was to evaluate the feasibility of a non-contrast, respiratory motion-resolved whole-heart cardiovascular magnetic resonance angiography (CMRA) technique against reference standard CTA, for the quantitative assessment of cardiovascular anatomy and monitoring of disease progression in patients with thoracic aortic dilatation. METHODS: Twenty-four patients (68.6 ± 9.8 years) with thoracic aortic dilatation prospectively underwent clinical CTA and research 1.5T CMRA between July 2017 and November 2018. Scans were repeated in 15 patients 1 year later. A prototype free-breathing 3D radial balanced steady-state free-precession whole-heart CMRA sequence was used in combination with compressed sensing-based reconstruction. Area, circumference, and diameter measurements were obtained at seven aortic levels by two experienced and two inexperienced readers. In addition, area and diameter measurements of the cardiac chambers, pulmonary arteries and pulmonary veins were also obtained. Agreement between the two modalities was assessed with intraclass correlation coefficient (ICC) analysis, Bland-Altman plots and scatter plots. Area, circumference and diameter measurements on a per-level analysis showed good or excellent agreement between CTA and CMRA (ICCs &gt; 0.84). Means of differences on Bland-Altman plots were: area 0.0 cm &lt;sup&gt;2&lt;/sup&gt; [- 1.7; 1.6]; circumference 1.0 mm [- 10.0; 12.0], and diameter 0.6 mm [- 2.6; 3.6]. Area and diameter measurements of the left cardiac chambers showed good agreement (ICCs &gt; 0.80), while moderate to good agreement was observed for the right chambers (all ICCs &gt; 0.56). Similar good to excellent inter-modality agreement was shown for the pulmonary arteries and veins (ICC range 0.79-0.93), with the exception of the left lower pulmonary vein (ICC &lt; 0.51). Inter-reader assessment demonstrated mostly good or excellent agreement for both CTA and CMRA measurements on a per-level analysis (ICCs &gt; 0.64). Difference in maximum aortic diameter measurements at baseline vs follow up showed excellent agreement between CMRA and CTA (ICC = 0.91). The radial whole-heart CMRA technique combined with respiratory motion-resolved reconstruction provides comparable anatomical measurements of the thoracic aorta and cardiac structures as the reference standard CTA. It could potentially be used to diagnose and monitor patients with thoracic aortic dilatation without exposing them to radiation or contrast media
    corecore