2 research outputs found

    Dynamic formation of Rydberg aggregates at off-resonant excitation

    Get PDF
    The dynamics of a cloud of ultra-cold two-level atoms is studied at off-resonant laser driving to a Rydberg state. We find that resonant excitation channels lead to strongly peaked spatial correlations associated with the buildup of asymmetric excitation structures. These aggregates can extend over the entire ensemble volume, but are in general not localized relative to the system boundaries. The characteristic distances between neighboring excitations depend on the laser detuning and on the interaction potential. These properties lead to characteristic features in the spatial excitation density, the Mandel QQ parameter, and the total number of excitations. As an application an implementation of the three-atom CSWAP or Fredkin gate with Rydberg atoms is discussed. The gate not only exploits the Rydberg blockade, but also utilizes the special features of an asymmetric geometric arrangement of the three atoms. We show that continuous-wave off-resonant laser driving is sufficient to create the required spatial arrangement of atoms out of a homogeneous cloud.Comment: 8 pages, 7 figure

    Universal time-evolution of a Rydberg lattice gas with perfect blockade

    Full text link
    We investigate the dynamics of a strongly interacting spin system that is motivated by current experimental realizations of strongly interacting Rydberg gases in lattices. In particular we are interested in the temporal evolution of quantities such as the density of Rydberg atoms and density-density correlations when the system is initialized in a fully polarized state without Rydberg excitations. We show that in the thermodynamic limit the expectation values of these observables converge at least logarithmically to universal functions and outline a method to obtain these functions. We prove that a finite one-dimensional system follows this universal behavior up to a given time. The length of this universal time period depends on the actual system size. This shows that already the study of small systems allows to make precise predictions about the thermodynamic limit provided that the observation time is sufficiently short. We discuss this for various observables and for systems with different dimensions, interaction ranges and boundary conditions.Comment: 16 pages, 3 figure
    corecore