1,077 research outputs found
An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants
BACKGROUND: Traditional gene replacement procedures are still time-consuming. They usually necessitate cloning of the gene to be mutated, insertional inactivation of the gene with an antibiotic resistance cassette and exchange of the plasmid-borne mutant allele with the bacterial chromosome. PCR and recombinational technologies can be exploited to substantially accelerate virtually all steps involved in the gene replacement process. RESULTS: We describe a method for rapid generation of unmarked P. aeruginosa deletion mutants. Three partially overlapping DNA fragments are amplified and then spliced together in vitro by overlap extension PCR. The resulting DNA fragment is cloned in vitro into the Gateway vector pDONR221 and then recombined into the Gateway-compatible gene replacement vector pEX18ApGW. The plasmid-borne deletions are next transferred to the P. aeruginosa chromosome by homologous recombination. Unmarked deletion mutants are finally obtained by Flp-mediated excision of the antibiotic resistance marker. The method was applied to deletion of 25 P. aeruginosa genes encoding transcriptional regulators of the GntR family. CONCLUSION: While maintaining the key features of traditional gene replacement procedures, for example, suicide delivery vectors, antibiotic resistance selection and sucrose counterselection, the method described here is considerably faster due to streamlining of some of the key steps involved in the process, especially plasmid-borne mutant allele construction and its transfer into the target host. With appropriate modifications, the method should be applicable to other bacteria
Role of Neuronal NADPH Oxidase 1 in the Peri-Infarct Regions after Stroke
The molecular mechanism underlying the selective vulnerability of neurons to oxidative damage caused by ischemia-reperfusion (I/R) injury remains unknown. We sought to determine the role of NADPH oxidase 1 (Nox1) in cerebral I/R-induced brain injury and survival of newborn cells in the ischemic injured region. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion. After reperfusion, infarction size, level of superoxide and 8-hydroxy-20-deoxyguanosine (8-oxo-2dG), and Nox1 immunoreactivity were determined. RNAi-mediated knockdown of Nox1 was used to investigate the role of Nox1 in I/R-induced oxidative damage, neuronal death, motor function recovery, and ischemic neurogenesis. After I/R, Nox1 expression and 8-oxo-2dG immunoreactivity was increased in cortical neurons of the peri-infarct regions. Both infarction size and neuronal death in I/R injury were significantly reduced by adeno-associated virus (AAV)-mediated transduction of Nox1 short hairpin RNA (shRNA). AAV-mediated Nox1 knockdown enhanced functional recovery after MCAO. The level of survival and differentiation of newborn cells in the peri-infarct regions were increased by Nox1 inhibition. Our data suggest that Nox-1 may be responsible for oxidative damage to DNA, subsequent cortical neuronal degeneration, functional recovery, and regulation of ischemic neurogenesis in the peri-infarct regions after stroke
Validation and proposal for cut-off values of an abbreviated version of the Alcohol Use Disorder Identification Test using the Korean National Health and Nutrition Examination Survey
Objective Several abbreviated versions of the Alcohol Use Disorder Identification Test (AUDIT) have been developed and are widely used in clinical settings. In this study, we provide evidence supporting the use of abbreviated versions of AUDIT by comparing the utility of various abbreviated versions and determining cut-off values for the population of South Korea. Methods Data were obtained from the 4th to 6th Korean National Health and Nutrition Examination Surveys. After calculating the whole AUDIT score, we applied the cut-off value of at-risk drinking proposed by the World Health Organization and divided the study sample into normal and at-risk drinking groups. Receiver operating characteristic curves were drawn for AUDIT-3rd question (Q3) alone, AUDIT-quantity and frequency (QF), AUDIT-consumption (C), AUDIT-4, and AUDIT-primary clinic (PC), and optimal cut-off values were obtained for each group. Results A total of 46,450 subjects were analyzed. The at-risk drinking group comprised 29.2% of all subjects. The area under receiver operating characteristic curve (AUROC) of the abbreviated versions of AUDIT increased from 0.954 to 0.991 as the number of questions increased from one to four. The differences in AUROC between the abbreviated versions of AUDIT were statistically significant. The most appropriate cut-off values for AUDIT-Q3 alone, AUDIT-QF, AUDIT-C, AUDIT-4, and AUDIT-PC for adults over age 19 were 2, 4, 5, 6, and 4 points, respectively. Conclusion As the number of items analyzed increased from one to four items, the AUROC increased to a statistically significant level. Cut-off values for abbreviated versions of AUDIT are similar in South Korea to other countries
Novel LMNA Gene Mutation in a Patient With Atypical Werner's Syndrome
Hutchinson-Gilford progeria syndrome (HGPS) and Werner's syndrome are representative types of progeroid syndrome. LMNA (Lamin A/C) gene mutation with atypical Werner's syndrome have recently been reported. Atypical Werner's syndrome with the severe metabolic complications, the extent of the lipodystrophy is associated with A133L mutation in the LMNA gene and these patients present with phenotypically heterogeneous disorders. We experienced a 15-yr-old Korean female with progeroid features, generalized lipodystrophy, hypertriglyceridemia, fatty liver, steatohepatitis, and type 2 diabetes mellitus. Skin fibroblasts from the patient showed marked abnormal nuclear morphology, compared with that from normal persons. Gene analysis revealed that this patient had T506del of exon 2 in the LMNA gene. We report here the first case of atypical Werner's syndrome with frameshift mutation that was caused by T506del
Adenoviral Pneumonia During Etanercept Treatment in a Patient with Rheumatoid Arthritis
Inhibitors of tumor necrosis factor-alpha (TNF-α) have been approved for treating rheumatoid arthritis. As one of the biological response modifiers, etanercept has also been used in the treatment of psoriatic arthritis and inflammatory bowel disease. While etanercept is effective, certain infectious complications, such as tuberculosis, fungus, and cytomegalovirus, have been reported. We report the first Korean case of adenoviral pneumonia in a 55-year-old female who developed disseminated adenoviral infection following etanercept treatment, which resolved after anti-TNF-α discontinuation
Exploration of New Electroacupuncture Needle Material
Background. Electro Acupuncture (EA) uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microscope (SEM) after 0.5 mA, 60 min stimulation. The straightness was measured using a gap length of 100 mm, and tensile testing was performed by imposing a maximum tensile load. Results. Phosphor bronze, Ni coated SS304, were deemed inappropriate materials because of mild-to-moderate cytotoxicity and corrosion. Ti-6Al-4V and SS316 showed no cytotoxicity or corrosion. Ti-6Al-4V has a 70 times higher cost and 2.5 times lower conductivity than SS316. The results of both straightness and tensile testing confirmed that SS316 can be manufactured as a standard product. Conclusion. As a result, we confirmed that SS316 can be used a new EA electrode material. We hope that a further study of the maximum capacity of low-frequency stimulation using an SS316 for safe operation
Renal transplantation in a patient with Bartter syndrome and glomerulosclerosis
Bartter syndrome (BS) is a clinically and genetically heterogeneous inherited renal tube disorder characterized by renal salt wasting, hypokalemic metabolic alkalosis and normotensive hyperreninemic hyperaldosteronism. There have been several case reports of BS complicated by focal segmental glomerulosclerosis (FSGS). Here, we have reported the case of a BS patient who developed FSGS and subsequent end-stage renal disease (ESRD) and provided a brief literature review. The patient presented with classic BS at 3 months of age and developed proteinuria at 7 years. Renal biopsy performed at 11 years of age revealed a FSGS perihilar variant. Hemodialysis was initiated at 11 years of age, and kidney transplantation was performed at 16 years of age. The post-transplantation course has been uneventful for more than 3 years with complete disappearance of BS without the recurrence of FSGS. Genetic study revealed a homozygous p.Trp(TGG)610Stop(TGA) mutation in the CLCNKB gene. In summary, BS may be complicated by secondary FSGS due to the adaptive response to chronic salt-losing nephropathy, and FSGS may progress to ESRD in some patients. Renal transplantation in patients with BS and ESRD results in complete remission of BS
- …