169 research outputs found

    Ultrafast electronic energy transfer beyond the weak coupling limit in a proximal but orthogonal molecular dyad

    Get PDF
    Electronic energy transfer (EET) from a donor to an acceptor is an important mechanism that controls the light harvesting efficiency in a wide variety of systems, including artificial and natural photosynthesis and contemporary photovoltaic technologies. The detailed mechanism of BET at short distances or large angles between the donor and acceptor is poorly understood. Here the influence of the orientation between the donor and acceptor on EET is explored using a molecule with two nearly perpendicular chromophores. Very fast EET with a time constant of 120 fs is observed, which is at least 40 times faster than the time predicted by Coulombic coupling calculations. Depolarization of the emission signal indicates that the transition dipole rotates through ca. 64 degrees, indicating the near orthogonal nature of the EET event. The rate of EET is found to be similar to structural relaxation rates in the photoexcited oligothiophene donor alone, which suggests that this initial relaxation brings the dyad to a conical intersection where the excitation jumps to the acceptor.PostprintPeer reviewe

    Barrierless slow dissociation of photogenerated charge pairs in high-performance polymer-fullerene solar cells

    Get PDF
    The work in St Andrews was supported by the Engineering and Physical Sciences Research Council (grants EP/L017008/1, EP/J009016/1 and EP/G03673X/1) and the European Research Council (grant 321305). The work in Vilnius was supported by the Research Council of Lithuania (project MIP-85/2015). I.D.W.S. acknowledges support from a Royal Society Wolfson Research Merit Award. D.A.V. is grateful to Supergen SuperSolar Hub for the travel grant. The research data supporting this publication can be accessed at http://dx.doi.org/10.17630/7ec84b4b-d2ab-493c-aaf6-5503a44c0eb5Broadband transient absorption spectroscopy is combined with ultrafast carrier drift measurements to study dissociation of photogenerated charge pairs in efficient photovoltaic blends of the electron donating polymer PTB7 with the acceptor PC71BM. A high ensemble-average mobility sum of electrons and holes is observed which is independent of applied electric field above 12 V/μm and indicates nearly barrier-less pair dissociation at room temperature on a picosecond time scale. High efficiency of pair dissociation in this material is achieved by a combination of high electron mobility in fullerene clusters and hole delocalization along the polymer chain which increases by 30% during dissociation. Our results suggest a predominantly diffusive charge pair dissociation mechanism which requires persistent mobility of both carriers and preferably some delocalization of at least one of them.PostprintPostprintPeer reviewe

    Ultrafast Electronic Energy Transfer in an orthogonal molecular dyad

    Get PDF
    The St Andrews group acknowledges support from the European Research Council (grant number 321305) and the Engineering and Physical Sciences Research Council (grant EP/L017008/1). I.D.W.S. also acknowledges support from a Royal Society Wolfson Research Merit Award.Understanding electronic energy transfer (EET) is an important ingredient in the development of artificial photosynthetic systems and photovoltaic technologies. Although EET is at the heart of these applications and crucially influences their light-harvesting efficiency, the nature of EET over short distances for covalently bound donor and acceptor units is often not well understood. Here we investigate EET in an orthogonal molecular dyad (BODT4) in which simple models fail to explain the very origin of EET. Based on nonadiabatic ab initio molecular dynamics calculations and fluorescence depolarization experiments we gain detailed microscopic insights into the ultrafast electro-vibrational dynamics following photoexcitation. Our analysis offers molecular-level insights into these processes and reveals that it takes place on timescales ≲ 100 fs and occurs through an intermediate charge-transfer state.PostprintPeer reviewe

    Self-trapping and excited state absorption in fluorene homo-polymer and copolymers with benzothiadiazole and tri-phenylamine

    Get PDF
    We thank the EPSRC [EP/J009318/1 and EP/J009016/1] for funding. MJP thanks the European Research Council (ERC) for funding under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant No. 258990.Excited state absorption (ESA) is studied using time-dependent density functional theory and compared with experiments performed in dilute solutions. The molecules investigated are a fluorene pentamer, polyfluorene F8, the alternating F8 copolymer with benzothiadiazole F8BT, and two blue-emitting random copolymers F8PFB and F8TFB. Calculated and measured spectra show qualitatively comparable results. The ESA cross-section of co-polymers at its maximum is about three times lower than that of F8. The ESA spectra are found to change little upon structural relaxation of the excited state, or change in the order of sub-units in a co-polymer, for all studied molecules. In all these molecules, the strongest ESA transition is found to arise from the same electronic process, exhibiting a reversal of the charge parity. In addition, F8PFB and F8TFB are found to possess almost identical electronic behaviour.Publisher PDFPeer reviewe

    Tetrathiafulvalene-oligofluorene star-shaped systems : new semiconductor materials for fluorescent moisture indicators

    Get PDF
    A series of novel star-shaped oligofluorene–thiophene–tetrathiafulvalene systems have been synthesised, following different synthetic routes. Each system incorporates a tetrathiafulvalene redox-active centre and four oligofluorene arms, providing a two-dimensional character to the conjugated backbone. The oligomers differ in the number of fluorene units present in the arms (1 to 4) and the terminal groups at the end of each arm (H or trimethylsilyl). Half-unit oligofluorene systems possessing a 1,3-dithiole-2-one core (a known precursor to the tetrathiafulvalene centre) have been synthesised in order to compare the thermal, optical and electrochemical properties. These half-unit systems consist of a 1,3-dithiole-2-one core fused to a thiophene unit at the 3- and 4-positions. Two oligofluorene arms consisting of 1 to 4 monomer units per arm are positioned at the 4- and 6-positions of the thiophene unit, affording extended conjugation through the thiophene centre. The half-unit systems are found to be moderate emitters in solution, however, the star-shaped systems bearing the tetrathiafulvalene core exhibit inhibited fluorescence in both solution and the solid state. We have demonstrated that the emission of the tetrathiafulvalene systems can be enhanced through the oxidation of the redox-centre followed by a consecutive reaction of the strongly electrophilic tetrathiafulvalene dication with such nucleophiles as water and hydrazine. The result of these reactions leads to an increase in the photoluminescence of these systems, affording the opportunity for the tetrathiafulvalene materials to be used as photonic materials in moisture indicators

    Impulsiveness in Alcohol Addiction and Pathological Gambling

    Get PDF
    Numerous conducted studies, as well as the daily clinical experience, proves the importance of the role that impulsiveness plays in the clinical course and the treatment response in both psychoactive substance addictions, such as alcohol use disorder and behavioral addictions, such as gambling addiction. In the daily practice, impulsiveness as a personality trait is observed either in the context of a determining, i.e. causing factor in the personality development or as a result of a developed addiction. Certain types of impulsiveness are more often present in certain types of addicts and their detection enables us to make a more precise diagnosis and sub-classification as well as a more adequate adaptation of the treatment protocol. According to the studies so far, the occurrence of impulsiveness significantly affects the occurrence of relapse in treated addicts. To a large extent it also determines the range of the treatment response to the applied treatment procedures. The objective of this review was to point out the specific features of the prevalence of certain impulsiveness elements in psychoactive substance addicts, such as alcohol addicts, and of behavioral addicts, such as gambling addicts, and to additionally emphasize their clinical, diagnostic, treatment and prognostic value

    Understanding the impact of heavy ions and tailoring the optical properties of large-area Monolayer WS2 using Focused Ion Beam

    Get PDF
    Focused ion beam (FIB) has been used as an effective tool for precise nanoscale fabrication. It has recently been employed to tailor defect engineering in functional nanomaterials such as two-dimensional transition metal dichalcogenides (TMDCs), providing desirable properties in TMDC-based optoelectronic devices. However, the damage caused by the FIB irradiation and milling process to these delicate atomically thin materials, especially in the extended area, has not yet been elaboratively characterised. Understanding the correlation between lateral ion beam effects and optical properties of 2D TMDCs is crucial in designing and fabricating high-performance optoelectronic devices. In this work, we investigate lateral damage in large-area monolayer WS2 caused by the gallium focused ion beam milling process. Three distinct zones away from the milling location are identified and characterised via steady-state photoluminescence (PL) and Raman spectroscopy. An unexpected bright ring-shaped emission around the milled location has been revealed by time-resolved PL spectroscopy with high spatial resolution. Our finding opens new avenues for tailoring the optical properties of TMDCs by charge and defect engineering via focused ion beam lithography. Furthermore, our study provides evidence that while some localised damage is inevitable, distant destruction can be eliminated by reducing the ion beam current. It paves the way for the use of FIB to create nanostructures in 2D TMDCs, as well as the design and realisation of optoelectrical devices on a wafer scale

    Monothiatruxene-Based, Solution-Processed Green, Sky-Blue, and Deep-Blue Organic Light-Emitting Diodes with Efficiencies Beyond 5% Limit

    Get PDF
    The authors thank the Mazowieckie voivodeship, cofinanced with the European Union funds by the European Social Fund and European Union's Horizon 2020 Research and Innovation Programme H2020‐MSCA‐IF‐2014‐659237 for financial support. The authors thank Dr. Gary Nichol for the crystallographic data collection and refinement; The University of Edinburgh for funding the diffractometer purchase. I.D.W.S. acknowledges support from a Royal Society Wolfson Research Merit Award and from the Engineering and Physical Sciences Research Council (grant EP/J009016/1).The development of blue materials with good efficiency, even at high brightness, with excellent color purity, simple processing, and high thermal stability assuring adequate device lifetime is an important remaining challenge for organic light‐emitting didoes (OLEDs) in displays and lightning applications. Furthermore, these various features are typically mutually exclusive in practice. Herein, four novel green and blue light‐emitting materials based on a monothiatruxene core are reported together with their photophysical and thermal properties, and performance in solution‐processed OLEDs. The materials show excellent thermal properties with high glass transition temperatures ranging from 171 to 336 °C and decomposition temperatures from 352 to 442 °C. High external quantum efficiencies of 3.7% for a deep‐blue emitter with CIE color co‐ordinates (0.16, 0.09) and 7% for green emitter with color co‐ordinates (0.22, 0.40) are achieved at 100 cd m−2. The efficiencies observed are exceptionally high for fluorescent materials with photoluminescence quantum yields of 24% and 62%, respectively. The performance at higher brightness is very good with only 38% and 17% efficiency roll‐offs at 1000 cd m−2. The results indicate that utilization of this unique molecular design is promising for efficient deep‐blue highly stable and soluble light‐emitting materials.PostprintPeer reviewe

    Subpicosecond exciton dynamics in polyfluorene films from experiment and microscopic theory

    Get PDF
    The authors acknowledge financial support from the UK EPSRC (Grants EP/E065066/1, EP/E062636/1, EP/J009318/1 and EP/J009019/1), from the EPSRC Scottish Centre for Doctoral training in Condensed Matter Physics and from the European Union Seventh Framework Programme under Grant Agreement 321305.Electronic energy transfer (EET) in organic materials is a key mechanism that controls the efficiency of many processes, including light harvesting antennas in natural and artificial photosynthesis, organic solar cells, and biological systems. In this paper we have examined EET in solid-state thin-films of polyfluorene, a prototypical conjugated polymer, with ultrafast photoluminescence experiments and theoretical modeling. We observe EET occurring on a 680 ± 300 fs time scale by looking at the depolarisation of photoluminescence. An independent, predictive microscopic theoretical model is built by defining 125 000 chromophores containing both spatial and energetic disorder appropriate for a spin-coated thin film. The model predicts time-dependent exciton dynamics, without any fitting parameters, using the incoherent Förster-type hopping model. Electronic coupling between the chromophores is calculated by an improved version of the usual line-dipole model for resonant energy transfer. Without the need for higher level interactions, we find that the model is in general agreement with the experimentally observed 680 ± 300 fs depolarisation caused by EET. This leads us to conclude that femtosecond EET in polyfluorene can be described well by conventional resonant energy transfer, as long as the relevant microscopic parameters are well captured. The implications of this finding are that dipole-dipole resonant energy transfer can in some circumstances be fully adequate to describe ultrafast EET without needing to invoke strong or intermediate coupling mechanisms.PostprintPeer reviewe

    Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems

    Get PDF
    EZ-C acknowledges the University of St Andrews for financial support. IDWS acknowledges support from EPSRC (EP/J009016) and the European Research Council (grant 321305). IDWS also acknowledges support from a Royal Society Wolfson research merit award. DJ acknowledges the European Research Council (grant: 278845) and the RFI Lumomat for financial support.We present the first examples of dynamic supramolecular systems composed of cyclometalated Ir(III) complexes of the form of [Ir(C^N)2(N^N)]PF6 (where C^N is mesppy = 2-phenyl-4-mesitylpyridinato and dFmesppy = 2-(4,6-difluorophenyl)-4-mesitylpyridinato and N^N is 4,4':2',2'':4'',4'''-quaterpyridine, qpy) and zinc tetraphenylporphyrin (ZnTPP), assembled through non-covalent interactions between the distal pyridine moieties of the qpy ligand located on the iridium complex and the zinc of the ZnTPP. The assemblies have been comprehensively characterized by a series of analytical techniques (1H NMR titration experiments, 2D COSY and HETCOR NMR spectra and low temperature 1H NMR spectroscopy) and the crystal structures have been elucidated by X-ray diffraction. The optoelectronic properties of the assemblies and the electronic interaction between the iridium and porphyrin chromophoric units have been explored with detailed photophysical measurements, supported by time-dependent density functional theory (TD-DFT) calculations.PostprintPeer reviewe
    corecore