11 research outputs found
Meiotic chromosomes and nucleolar behavior in testicular cells of the grassland spittlebugs Deois flavopicta, Mahanarva fimbriolata and Notozulia entreriana (Hemiptera, Auchenorrhyncha)
Spittlebugs annually infest pastures and cause severe damage, representing a serious problem for the tropical American beef cattle industry. Spittlebugs are an important biotic constraint to forage production and there is a lack of cytogenetic data for this group of insects. For these reasons, we conducted this work, in which the spermatogenesis and nucleolar behavior of Deois flavopicta, Mahanarva fimbriolata and Notozulia entreriana were studied. The males possessed testes in the shape of a “bunch of grapes”; a variable number of testicular lobes per individual and polyploid nuclei composed of several heteropycnotic bodies. A heteropycnotic area was located in the periphery of the nucleus (prophase I); the chiasmata were terminal or interstitial; metaphases I were circular or linear and anaphase showed late migration of the sex chromosome. The chromosome complement had 2n = 19, except for N. entreriana (2n = 15); the spermatids were round with heteropycnotic material in the center and elongated with conspicuos chromatin. The analysis of testes after silver nitrate staining showed polyploid nuclei with three large and three smaller nucleolar bodies. Early prophase cells had an intensely stained nucleolar body located close to the chromatin and another less evident body located away from the chromatin. The nucleolar bodies disintegrated during diplotene. Silver staining occurred in two autosomes, in terminal and subterminal locations, the latter probably corresponding to the nucleolus organizer regions (NORs). The spermatids were round with a round nucleolar body and silver staining was observed in the medial and posterior region of the elongated part of the spermatid head
Comparative Study of Spermatogenesis and Nucleolar Behavior in Testicular Lobes of Euschistus heros (Heteroptera: Pentatomidae)
In some testicular lobes of the Pentatomidae there may be occurrence of atypical spermatogenesis or polymegaly, leading to the production of nonfertile sperm. The comparative analysis of spermatogenesis and nucleolar behavior in testicular lobes of Euschistus heros showed cells with polymegaly in lobes 4 and 6. Generally, when these lobes are present in the same individual, there is also the formation of atypical cells in the flanking lobe. Such characteristic was not seen in E. heros. However, differences regarding the concentration of heteropyknotic chromatin and silver-positive bodies in this lobe deserve attention. This study explored the literature and demonstrated the prevalence of some lobes in the formation of differentiated cells. It was also found in the literature that there is an association of the chromocenter with the nucleolus in several species of Pentatomidae, but in E. heros this association does not appear to occur
Comparative study of spermatogenesis and nucleolar behavior in testicular lobes of Euschistus heros (Heteroptera: Pentatomidae)
In some testicular lobes of the Pentatomidae there may be occurrence of atypical spermatogenesis or polymegaly, leading to the production of nonfertile sperm. The comparative analysis of spermatogenesis and nucleolar behavior in testicular lobes of Euschistus heros showed cells with polymegaly in lobes 4 and 6. Generally, when these lobes are present in the same individual, there is also the formation of atypical cells in the flanking lobe. Such characteristic was not seen in E. heros. However, differences regarding the concentration of heteropyknotic chromatin and silver-positive bodies in this lobe deserve attention. This study explored the literature and demonstrated the prevalence of some lobes in the formation of differentiated cells. It was also found in the literature that there is an association of the chromocenter with the nucleolus in several species of Pentatomidae, but in E. heros this association does not appear to occur. © 2010 Hederson Vinicius de Souza and Mary Massumi Itoyama
Morphological patterns of the heteropycnotic chromatin and nucleolar material in meiosis and spermiogenesis of some Pentatomidae (Heteroptera)
Pentatomidae is a family of Heteroptera which includes several agriculture pests that have had different aspects of their meiosis and spermiogenesis analyzed. In the present study we analyzed the morphological patterns of the heteropycnotic chromatin and the nucleolar material of Mormidea v-luteum, Oebalus poecilus and Oebalus ypsilongriseus. The three species presented multilobate testes, with three lobes in M. v-luteum and four in the Oebalus species. A karyotype with 2n = 14 chromosomes (12A + XY) was observed in the three species. Several characteristics were common to the three species, such as the absence of a testicular harlequin lobe (a lobe which produces different types of spermatozoa, previously considered a general characteristic of this family), late migration of the sex chromosomes and semi-persistence of the nucleolus. The three species also shared some characteristics regarding the patterns of the heteropycnotic chromatin and nucleolar material, but differed in others mainly related to the location of the heteropycnotic chromatin in the spermatids and the morphology and distribution of the nucleolar material at zygotene. The differences were always between species from different genera, suggesting a relationship with their genetic divergence.Fundação de Amparo Ă Pesquisa do Estado de SĂŁo Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq
Cytogenetical aspects of testicular cells in economically important species of coreidae family (Heteroptera)
Some cytogenetical aspects of spermatozoa formation were studied in 9 Coreidae Brazilian species: Anasa bellator, Athaumastus haematicus, Chariesterus armatus, Dallacoris obscura, Dallacoris pictus, Leptoglossus gonagra, Leptoglossus zonatus, Sphictyrtus fasciatus, and Zicca annulata. Similarly to the other species described to date, all the species studied herein showed cystic spermatogenesis, a reddish membrane covering the testes, a X0 sex determining system, a pair of m-chromosomes, intersticial chiasmata in most autosomes, and autosomes dividing reductionally at first meiotic division and equationally in the second 1 while sex chromosomes, divide equationally and reductionally at first and second meiotic division, respectively. In addition, it was observed that the sex chromosome is heteropycnotic at prophase and that heteropycnotic chromosomal material is found in the nuclei at spermiogenesis. In the species studied, the diploid chromosome number ranged from 19 to 25. It was 19 in S. fasciatus (16A+2m+X0); 21 in A. bellator, A. haematicus, D. obscura, D. pictus, L. gonagra, and L. zonatus (18A+2m+X0); 23 in Z. annulata (20A+2m+X0); and 25 in C. armatus (22A+2m+X0). © 2007 The Japan Mendel Society
Morphological aspects of the testes of 18 species of terrestrial of Heteroptera from Northwestern Sao Paulo (Brazil)
The Heteroptera are known for their odour, for being pests or for being disease carriers. However, they are still not extensively studied, perhaps because they form a very large group. Therefore, with the aim of enhancing the knowledge of the morphology of the testes of this insect order, we collected and analysed 18 species of terrestrial Heteroptera from the northwestern part of Sao Paulo. The analysis of these species revealed some differences between the testicles of these species, including their shape (elongated, oval, round or pecten), the morphology of the testicular lobes (elongated and paired side by side or united in a single region), the colours of the peritoneal sheath that surrounds the lobes (red, orange, yellow or translucent), and the number of testicular lobes (one, two, four, five, six or seven). Because the aspects analysed were highly variable, our study suggests a need for further analysis of Heteropteran testicular morphological differences
Meiotic behavior of 18 species from eight families of terrestrial Heteroptera
Insects of the suborder Heteroptera are known for their odor, for being pests, or for being disease carriers. To gain better insight into the cytogenetic characteristics of heteropterans, 18 species of terrestrial Heteroptera belonging to eight families were studied. The presence of heteropycnotic corpuscles during prophase I, terminal or interstitial chiasmas, telomeric associations between chromosomes, ring disposals of autosomes during metaphase, and late migrations of the sex chromosomes during anaphase were analyzed. These features showed identical patterns to other species of Heteroptera previously described in the literature. Another studied characteristic was chromosome complements. The male chromosome complements observed were 2n = 12 chromosomes [10A + XY, Galgupha sidae (Amyot & Serville) (Corimelaenidae) and Pachycoris torridus (Scopoli) (Scutelleridae)]; 2n = 13 [10A + 2m + X0, Harmostes serratus (Fabricius), Harmostes apicatus (Stål), Jadera haematoloma (Herrich-Schaeffer), Jadera sanguinolenta (Fabricius), Jadera sp. (Rhopalidae)], and Neomegalotomus parvus (Westwood) (Alydidae); 2n = 13 [12A + X0, Stenocoris furcifera (Westwood) (Alydidae); 2n = 14 [12A + XY, Dictyla monotropidia (Stål) (Tingidae)]; 2n = 19 [18A + X0, Acanonicus hahni (Stål) (Coreidae)]; 2n = 21 [18A + 2m + X0, Acanthocephala sp. (Dallas) (Coreidae)]; 2n = 27 [24A + 2m + X0, Anisoscelis foliacea marginella (Dallas) (Coreidae)]; 2n = 18 [16A + XY, Oncopeltus fasciatus (Dallas) (Lygaeidae)]; 2n = 17 [14A + X1X2Y, Oxycarenus hyalinipennis (Costa) (Lygaeidae)]; 2n = 16 [12A + 2m + XY, Pachybrachius bilobatus (Say) (Lygaeidae)]; 2n = 26 [24A + XY, Atopozelus opsinus (Elkins) (Reduviidae)]; and 2n = 27 [24A + X1X2Y, Doldina carinulata (Stål) (Reduviidae)]. The diversity of the cytogenetic characteristics of Heteroptera was reflected in the 18 studied species. Thus, this study extends the knowledge of these characteristics, such as the variations related to chromosome complements, sex chromosome systems, and meiotic behavior