130 research outputs found
Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties
Hemicelluloses represent a largely unutilized resource for future bioderived films in packaging and other applications. However, improvement of film properties is needed in order to transfer this potential into reality. In this context, sepiolite, a fibrous clay, was investigated as an additive to enhance the properties of rye flour arabinoxylan. Composite films cast from arabinoxylan solutions and sepiolite suspensions in water were transparent or semitransparent at additive loadings in the 2.5-10 wt % range. Scanning electron microscopy showed that the sepiolite was well dispersed in the arabinoxylan films and sepiolite fiber aggregation was not found. FT-IR spectroscopy provided some evidence for hydrogen bonding between sepiolite and arabinoxylan. Consistent with these findings, mechanical testing showed increases in film stiffness and strength with sepiolite addition and the effect of poly(ethylene glycol) methyl ether (mPEG) plasticizer addition. Incorporation of sepiolite did not significantly influence the thermal degradation or the gas barrier properties of arabinoxylan films, which is likely a consequence of sepiolite fiber morphology. In summary, sepiolite was shown to have potential as an additive to obtain stronger hemicellulose films although other approaches, possibly in combination with the use of sepiolite, would be needed if enhanced film barrier properties are required for specific applications.</p
Lamellae-controlled electrical properties of polyethylene-morphology, oxidation and effects of antioxidant on the DC conductivity
Destruction of the spherulite structure in low-density polyethylene (LDPE) is shown to result in a more insulating material at low temperatures, while the reverse effect is observed at high temperatures. On average, the change in morphology reduced the conductivity by a factor of 4, but this morphology-related decrease in conductivity was relatively small compared with the conductivity drop of more than 2 decades that was observed after slight oxidation of the LDPE (at 25 \ub0C and 30 kV mm-1). The conductivity of LDPE was measured at different temperatures (25-60 \ub0C) and at different electrical field strengths (3.3-30 kV mm-1) for multiple samples with a total crystalline content of 51 wt%. The transformation from a 5 μm coherent structure of spherulites in the LDPE to an evenly dispersed random lamellar phase (with retained crystallinity) was achieved by extrusion melt processing. The addition of 50 ppm commercial phenolic antioxidant to the LDPE matrix (e.g. for the long-term use of polyethylene in high voltage direct current (HVDC) cables) gave a conductivity ca. 3 times higher than that of the same material without antioxidants at 60 \ub0C (the operating temperature for the cables). For larger amounts of antioxidant up to 1000 ppm, the DC conductivity remained stable at ca. 1
7 10-14 S m-1. Finite element modeling (FEM) simulations were carried out to model the phenomena observed, and the results suggested that the higher conductivity of the spherulite-containing LDPE stems from the displacement and increased presence of polymeric irregularities (formed during crystallization) in the border regions of the spherulite structures
Nanocomposites and polyethylene blends: two potentially synergistic strategies for HVDC insulation materials with ultra-low electrical conductivity
Among the various requirements that high voltage direct current (HVDC) insulation materials need to satisfy, sufficiently low electrical conductivity is one of the most important. The leading commercial HVDC insulation material is currently an exceptionally clean cross-linked low-density polyethylene (XLPE). Previous studies have reported that the DC-conductivity of low-density polyethylene (LDPE) can be markedly reduced either by including a fraction of high-density polyethylene (HDPE) or by adding a small amount of a well dispersed, semiconducting nanofiller such as Al2O3 coated with a silane. This study demonstrates that by combining these two strategies a synergistic effect can be achieved, resulting in an insulation material with an ultra-low electrical conductivity. The addition of both HDPE and C8–Al2O3 nanoparticles to LDPE resulted in ultra-insulating nanocomposites with a conductivity around 500 times lower than of the neat LDPE at an electric field of 32 kV/mm and 60–90 \ub0C. The new nanocomposite is thus a promising material regarding the electrical conductivity and it can be further optimized since the polyethylene blend and the nanoparticles can be improved independently
Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials
Polymer-based materials are increasingly produced through fused deposition modelling (FDM) – an additive manufacturing process, due to its intrinsic advantages in manufacturing complex shapes and structures at low overhead costs. The versatility of this technology has attracted several industries to print complex geometrical structures. This underlines the importance of studying the mechanical strength of FDM printed polymeric materials, especially their fatigue behaviour in cyclic loading conditions. Conventionally manufactured polymeric materials (e.g. injection moulding) have superior fatigue performance than FDM printed materials. Unlike conventionally manufactured polymers, FDM-made polymers have layer by layer adhesion and the influence of printing parameters make fatigue analysis complex and critical. The influences of printing parameters and printing material characteristics have a significant impact on the fatigue behaviour of these materials. The underlying mechanism behind the fatigue of FDM printed polymers is crucial for the assessment of these materials in structural applications. However, the fatigue behaviour of FDM printed polymeric materials has not been reviewed in detail. Therefore, this article aims to evaluate 3D printed polymeric materials’ fatigue properties. The importance of fatigue in the FDM printed biomedical materials is also reviewed, and more importantly, the novel FDM printed architected cellular material fatigue properties are also introduced. © 2020 The Author(s
Molecular Dynamics Simulations of Cellulose and Dialcohol Cellulose under Dry and Moist Conditions
The development of wood-based thermoplastic polymers that can replace synthetic plastics is of high environmental importance, and previous studies have indicated that cellulose-rich fiber containing dialcohol cellulose (ring-opened cellulose) is a very promising candidate material. In this study, molecular dynamics simulations, complemented with experiments, were used to investigate how and why the degree of ring opening influences the properties of dialcohol cellulose, and how temperature and presence of water affect the material properties. Mechanical tensile properties, diffusion/mobility-related properties, densities, glass-transition temperatures, potential energies, hydrogen bonds, and free volumes were simulated for amorphous cellulosic materials with 0-100% ring opening, at ambient and high (150 \ub0C) temperatures, with and without water. The simulations showed that the impact of ring openings, with respect to providing molecular mobility, was higher at high temperatures. This was also observed experimentally. Hence, the ring opening had the strongest beneficial effect on “processability” (reduced stiffness and strength) above the glass-transition temperature and in wet conditions. It also had the effect of lowering the glass-transition temperature. The results here showed that molecular dynamics is a valuable tool in the development of wood-based materials with optimal thermoplastic properties
Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends
Biocomposites being environmentally-friendly alternative to synthetic composites are gaining increasing demand for various applications. Hence, biocomposite development should be integrated within a circular economy (CE) model to ensure a sustainable production that is simultaneously innocuous towards the environment. This review presents an overview of the state-of-the-art technologies for the adoption of the CE concept in biocomposite development. The study outlined the properties, environmental and economic impacts of biocomposites. A critical review of the life-cycle assessment of biocomposite for evaluating greenhouse gas emissions and carbon footprints was conducted. In addition, the opportunities and challenges pertaining to the implementation of CE have been discussed in detail. Recycling and utilisation of bio-based constituents were identified as the critical factors in embracing CE. Therefore, the development of innovative recycling technologies and an enhanced use of novel biocomposite constituents could lead to a reduction in material waste and environmental footprints. This article is one of the first studies to review the circularity of biocomposites in detail that will stimulate further research in enhancing the sustainability of these polymeric materials. © 202
Influence of repeated anaesthesia on physiological parameters in male Wistar rats: a telemetric study about isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl
Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate) dense membranes
- …
