38 research outputs found

    Nonuniversal correlations in multiple scattering

    Full text link
    We show that intensity of a wave created by a source embedded inside a three-dimensional disordered medium exhibits a non-universal space-time correlation which depends explicitly on the short-distance properties of disorder, source size, and dynamics of disorder in the immediate neighborhood of the source. This correlation has an infinite spatial range and is long-ranged in time. We suggest that a technique of "diffuse microscopy" might be developed employing spatially-selective sensitivity of the considered correlation to the disorder properties.Comment: 15 pages, 3 postscript figures, accepted to Phys. Rev.

    Time-Resolved Diffusing Wave Spectroscopy for selected photon paths beyond 300 transport mean free paths

    Full text link
    This paper is devoted to the theoretical and experimental demonstration of the possibility to perform time-resolved diffusing wave spectroscopy: we successfully registered field fluctuations for selected photon path lengths that can overpass 300 transport mean free paths. Such a performance opens new possibilities for biomedical optics applications.Comment: 12 pages, 3 figure

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    Probing helium interfaces with light scattering : from fluid mechanics to statistical physics

    Get PDF
    We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous glasses during the process of helium condensation. The context, aims, and results of these experiments are reviewed, with focus on the specificity of light scattering by helium. In particular, we discuss how, for different reasons, the closeness to unity of the index of refraction of helium allows in both cases to minimise the problem of multiple scattering and obtain results which it would not be possible to get using other fluids.Comment: 21 page

    Temporal fluctuations of waves in weakly nonlinear disordered media

    Full text link
    We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the system "coherent wave + nonlinear disordered medium". The feedback is provided by the multiple scattering. The development of instability is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in Phys. Rev.

    Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging

    Full text link
    We report in this paper what is to our knowledge the first observation of a time-resolved diffusing wave spectroscopy signal recorded by transillumination through a thick turbid medium: the DWS signal is measured for a fixed photon transit time, which opens the possibility of improving the spatial resolution. This technique could find biomedical applications, especially in mammography.Comment: 9 pages, 4 figure

    Dark speckle imaging of colloidal suspensions in multiple light scattering media

    No full text

    Visualization of flow in multiple-scattering liquids

    No full text
    We have performed quasi-elastic multiple-light-scattering experiments on a suspension of colloidal particles in Brownian motion into which a capillary with Poiseuille flow of the same suspension was inserted. We show that the time correlation function of the backscattered light, measured at various points on the sample surface, provides information on the position of the capillary and on the flow rate, demonstrating the possibility of imaging flow in turbid media under conditions of no static scattering contrast
    corecore