152 research outputs found
Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies
We present a novel framework to decompose three-nucleon forces in a momentum
space partial-wave basis. The new approach is computationally much more
efficient than previous methods and opens the way to ab initio studies of
few-nucleon scattering processes, nuclei and nuclear matter based on
higher-order chiral 3N forces. We use the new framework to calculate matrix
elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces
and carry out benchmark calculations for neutron matter and symmetric nuclear
matter. We also study the size of the individual three-nucleon force
contributions for H. For nonlocal regulators, we find that the sub-leading
terms, which have been neglected in most calculations so far, provide important
contributions. All matrix elements are calculated and stored in a user-friendly
way, such that values of low-energy constants as well as the form of regulator
functions can be chosen freely.Comment: 10 pages, 4 figure
Role of the total isospin 3/2 component in three-nucleon reactions
We discuss the role of the three-nucleon isospin T=3/2 amplitude in elastic
neutron-deuteron scattering and in the deuteron breakup reaction. The
contribution of this amplitude originates from charge-independence breaking of
the nucleon-nucleon potential and is driven by the difference between
neutron-neutron (proton-proton) and neutron-proton forces. We study the
magnitude of that contribution to the elastic scattering and breakup
observables, taking the locally regularized chiral N4LO nucleon-nucleon
potential supplemented by the chiral N2LO three-nucleon force. For comparison
we employ also the Av18 nucleon-nucleon potential combined with the Urbana IX
three-nucleon force. We find that the isospin T=3/2 component is important for
the breakup reaction and the proper treatment of charge-independence breaking
in this case requires the inclusion of the 1S0 state with isospin T=3/2. For
neutron-deuteron elastic scattering the T=3/2 contributions are insignificant
and charge-independence breaking can be accounted for by using the effective
t-matrix generated with the so-called "2/3-1/3" rule.Comment: 24 pages, 8 figures, 3 Table
Low-energy neutron-deuteron reactions with N3LO chiral forces
We solve three-nucleon Faddeev equations with nucleon-nucleon and
three-nucleon forces derived consistently in the framework of chiral
perturbation theory at next-to-next-to-next-to-leading order in the chiral
expansion. In this first investigation we include only matrix elements of the
three-nucleon force for partial waves with the total two-nucleon
(three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron
elastic scattering and deuteron breakup reaction are studied. Emphasis is put
on Ay puzzle in elastic scattering and cross sections in symmetric-space-star
and neutron-neutron quasi-free-scattering breakup configurations, for which
large discrepancies between data and theory have been reported.Comment: 22 pages, 7 figure
Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces
We apply improved nucleon-nucleon potentials up to fifth order in chiral
effective field theory, along with a new analysis of the theoretical truncation
errors, to study nucleon-deuteron (Nd) scattering and selected low-energy
observables in 3H, 4He, and 6Li. Calculations beyond second order differ from
experiment well outside the range of quantified uncertainties, providing truly
unambiguous evidence for missing three-nucleon forces within the employed
framework. The sizes of the required three-nucleon force contributions agree
well with expectations based on Weinberg's power counting. We identify the
energy range in elastic Nd scattering best suited to study three-nucleon force
effects and estimate the achievable accuracy of theoretical predictions for
various observables.Comment: 5 pages, 5 figure
Towards high-order calculations of three-nucleon scattering in chiral effective field theory
We discuss the current status of chiral effective field theory in the three-nucleon sector and present selected results for nucleon–deuteron scattering observables based on semilocal momentum-space-regularized chiral two-nucleon potentials together with consistently regularized three-nucleon forces up to third chiral order. Using a Bayesian model for estimating truncation errors, the obtained results are found to provide a good description of the experimental data. We confirm our earlier findings that a high-precision description of nucleon–deuteron scattering data below pion production threshold will require the theory to be pushed to fifth chiral order. This conclusion is substantiated by an exploratory study of selected short-range contributions to the three-nucleon force at that order, which, as expected, are found to have significant effects on polarization observables at intermediate and high energies. We also outline the challenges that will need to be addressed in order to push the chiral expansion of three-nucleon scattering observables to higher orders
Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers
Neutron-star (NS) merger simulations are conducted for 38 representative
microphysical descriptions of high-density matter in order to explore the
equation-of-state dependence of the postmerger ring-down phase. The formation
of a deformed, oscillating, differentially rotating very massive NS is the
typical outcome of the coalescence of two stars with 1.35 for most
candidate EoSs. The oscillations of this object imprint a pronounced peak in
the gravitational-wave (GW) spectra, which is used to characterize the emission
for a given model. The peak frequency of this postmerger GW signal correlates
very well with the radii of nonrotating NSs, and thus allows to constrain the
high-density EoS by a GW detection. In the case of 1.35-1.35
mergers the peak frequency scales particularly well with the radius of a NS
with 1.6 , where the maximum deviation from this correlation is only
60 meters for fully microphysical EoSs which are compatible with NS
observations. Combined with the uncertainty in the determination of the peak
frequency it appears likely that a GW detection can measure the radius of a 1.6
NS with an accuracy of about 100 to 200 meters. We also uncover
relations of the peak frequency with the radii of nonrotating NSs with 1.35
or 1.8 , with the radius or the central energy density
of the maximum-mass Tolman-Oppenheimer-Volkoff configuration, and with the
pressure or sound speed at a fiducial rest-mass density of about twice nuclear
saturation density. Furthermore, it is found that a determination of the
dominant postmerger GW frequency can provide an upper limit for the maximum
mass of nonrotating NSs. The prospects for a detection of the postmerger GW
signal and a determination of the dominant GW frequency are estimated to be in
the range of 0.015 to 1.2 events per year with the upcoming Advanced LIGO
detector.Comment: 29 pages, 28 figures, accepted for publication in Phys. Rev.
Application of semilocal coordinate-space regularized chiral forces to elastic Nd scattering and breakup
We solve three-nucleon (3N) Faddeev equations with nucleon–nucleon (NN) and three-nucleon forces (3NF) derived consistently in the framework of chiral perturbation theory, taking the semilocal coordinate-space regularized chiral N4LO NN potential supplemented by the chiral N2LO 3NF regularized in the same way. Based on these solutions the nucleon–deuteron (Nd) elastic scattering and deuteron breakup reactions are studied. We checked that the elastic Nd scattering cross section can be used as an alternative observable to the doublet neutron–deuteron (nd) scattering length to fix, together with the 3H binding energy, the strengths of the contact terms of the N2LO 3NF. We investigated the predicted 3NF effects in 3N continuum reactions putting an emphasis on the Ay puzzle in low energy nd elastic scattering and on cross sections in the symmetrical-space-star and quasi-free-scattering breakup configurations. We found that the N2LO 3NF provides effects comparable to those of standard, (semi-)phenomenological 2π-exchange Tucson-Melbourne 3NF
Towards high-order calculations of three-nucleon scattering in chiral effective field theory
We discuss the current status of chiral effective field theory in the three-nucleon sector and present selected results for nucleon–deuteron scattering observables based on semilocal momentum-space-regularized chiral two-nucleon potentials together with consistently regularized three-nucleon forces up to third chiral order. Using a Bayesian model for estimating truncation errors, the obtained results are found to provide a good description of the experimental data. We confirm our earlier findings that a high-precision description of nucleon–deuteron scattering data below pion production threshold will require the theory to be pushed to fifth chiral order. This conclusion is substantiated by an exploratory study of selected short-range contributions to the three-nucleon force at that order, which, as expected, are found to have significant effects on polarization observables at intermediate and high energies. We also outline the challenges that will need to be addressed in order to push the chiral expansion of three-nucleon scattering observables to higher orders
Nuclear forces from chiral EFT: The unfinished business
In spite of the great progress we have seen in recent years in the derivation
of nuclear forces from chiral effective field theory (EFT), some important
issues are still unresolved. In this contribution, we discuss the open problems
which have particular relevance for microscopic nuclear structure, namely, the
proper renormalization of chiral nuclear potentials and sub-leading many-body
forces.Comment: 16 pages, 3 figures; contribution to J. Phys. G, Special Issue, Focus
Section: Open Problems in Nuclear Structur
Properties of ^{4}He and ^{6}Li with improved chiral EFT interactions
We present recent results for 4He and 6Li obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. At N3LO and N4LO additional renormalization using the Similarity Renormalization Group is adopted to improve numerical convergence of the many-body calculations. We discuss results for the ground state energies, as well as the magnetic moment and the low-lying spectrum of 6Li
- …