167 research outputs found

    AMPDB: the Arabidopsis Mitochondrial Protein Database

    Get PDF
    The Arabidopsis Mitochondrial Protein Database is an Internet-accessible relational database containing information on the predicted and experimentally confirmed protein complement of mitochondria from the model plant Arabidopsis thaliana (http://www.ampdb.bcs.uwa.edu.au/). The database was formed using the total non-redundant nuclear and organelle encoded sets of protein sequences and allows relational searching of published proteomic analyses of Arabidopsis mitochondrial samples, a set of predictions from six independent subcellular-targeting prediction programs, and orthology predictions based on pairwise comparison of the Arabidopsis protein set with known yeast and human mitochondrial proteins and with the proteome of Rickettsia. A variety of precomputed physical–biochemical parameters are also searchable as well as a more detailed breakdown of mass spectral data produced from our proteomic analysis of Arabidopsis mitochondria. It contains hyperlinks to other Arabidopsis genomic resources (MIPS, TIGR and TAIR), which provide rapid access to changing gene models as well as hyperlinks to T-DNA insertion resources, Massively Parallel Signature Sequencing (MPSS) and Genome Tiling Array data and a variety of other Arabidopsis online resources. It also incorporates basic analysis tools built into the query structure such as a BLAST facility and tools for protein sequence alignments for convenient analysis of queried results

    Beyond the Western front:targeted proteomics and organelle abundance profiling

    Get PDF
    The application of westerns or immunoblotting techniques for assessing the composition, dynamics, and purity of protein extracts from plant material has become common practice. While the approach is reproducible, can be readily applied and is generally considered robust, the field of plant science suffers from a lack of antibody variety against plant proteins. The development of approaches that employ mass spectrometry to enable both relative and absolute quantification of many hundreds of proteins in a single sample from a single analysis provides a mechanism to overcome the expensive impediment in having to develop antibodies in plant science. We consider it an opportune moment to consider and better develop the adoption of multiple reaction monitoring (MRM)-based analyses in plant biochemistry

    The<i> Arabidopsis</i> cytosolic proteome:the metabolic heart of the cell

    Get PDF
    The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago

    What makes a mitochondrion?

    Get PDF
    Experimental analyses of the proteins found in the mitochondria of yeast, humans and Arabidopsis have confirmed some expectations but given some surprises and some insights into the evolutionary origins of mitochondrial proteins

    Control of Ascorbate Synthesis by Respiration and Its Implications for Stress Responses

    Get PDF
    We show for the first time that respiration can control ascorbate (AA) synthesis in plants. Evidence for this control is provided by (a) the localization of L-galactono-1,4-lactone dehydrogenase (GalLDH), the terminal enzyme in AA biosynthesis, with mitochondrial complex I, and its regulation by electron transport through this complex, (b) the absolute requirement of the enzyme for oxidized cytochrome c (cyt c(ox)) as substrate, and (c) the coordinated response of respiration and AA synthesis to stress induced by hormone treatment.Instituto de Fisiología VegetalFacultad de Ciencias Agrarias y Forestale

    An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development

    Get PDF
    Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity

    The <i>Arabidopsis</i> Golgi-localized GDP-L-fucose transporter is required for plant development

    Get PDF
    Indexación: Web of Science.Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.http://www.nature.com/articles/ncomms1211
    • …
    corecore