548 research outputs found
Particle motion and stain removal during simulated abrasive tooth cleaning
Stain removal from teeth is important both to prevent decay and for appearance. This is usually achieved using a filament-based toothbrush with a toothpaste consisting of abrasive particles in a carrier fluid. This work has been carried out to examine how these abrasive particles interact with the filaments and cause material removal from a stain layer on the surface of a tooth. It is important to understand this mechanism as while maximum cleaning efficiency is required, this must not be accompanied by damage to the enamel or dentine substrate. In this work simple abrasive scratch tests were used to investigate stain removal mechanism of two abrasive particles commonly used in tooth cleaning, silica and perlite. Silica particles are granular in shape and very different to perlite particles, which are flat and have thicknesses many times smaller than their width. Initially visualisation studies were carried out with perlite particles to study how they are entrained into a filament/counterface contact. Results were compared with previous studies using silica. Reciprocating scratch tests were then run to study how many filaments have a particle trapped at one moment and are involved in the cleaning process. Stain removal tests were then carried out in a similar manner to establish cleaning rates with the two particle types. Perlite particles were found to be less abrasive than silica. This was because of their shape and how they were entrained into the filament contacts and loaded against a counterface. With both particles subsurface damage during stain removal was found to be minimal. A simple model was built to predict stain removal rates with silica particles, which gave results that correlated well with the experimental data
Interaction between toothbrushes and toothpaste abrasive particles in simulated tooth cleaning
There are currently many toothbrush designs on the market incorporating different
filament configurations such as filaments at various angles and different lengths and
made from several different materials. In order to understand how the tooth cleaning
process occurs there is a need to investigate in detail how the abrasive particles in a
toothpaste interact with the filaments in a teeth cleaning contact and cause material
removal from a plaque or stain layer.
The following describes the development of optical apparatus to enable the
visualisation of simulated teeth cleaning contacts. Studies have been carried out using
the apparatus to investigate particle entrainment into the contact and how it differs
with varying bristle configurations. The effects of filament stiffness and tip shape
were also investigated. Various types of electric toothbrushes were also tested.
The studies have shown how particles are trapped at the tips of toothbrush filaments.
Particles, suspended in fluid, approach the filament tips, as they pass through they
may become trapped. Greater particle entrainment into the filament tip contact occurs
with a reciprocating action at low filament loads and deflections than with a sliding
motion. Large particles are less likely to enter tip contacts and are trapped between
tips or under the filament bend at higher loads.
Whether the particles are likely to be trapped and how long they remain so depends
on the filament stiffness and degree of splay on loading and the filament
configuration. The direction the filaments point in, the number of filaments in a tuft,
the spacing of the tufts and the way the filaments splay when deflected all have an
influence on entrainment of particles. Tufts with tightly packed stiff filaments which
deflected together on loading were more effective at trapping particles than more flexible filaments that splayed out on loading as they present more of a barrier to
particle entry and exit from the tip region
Transcriptomic analysis of human astrocytes in vitro reveals hypoxia-induced mitochondrial dysfunction, modulation of metabolism, and dysregulation of the immune response
Hypoxia is a feature of neurodegenerative diseases, and can both directly and indirectly impact on neuronal function through modulation of glial function. Astrocytes play a key role in regulating homeostasis within the central nervous system, and mediate hypoxia-induced changes in response to reduced oxygen availability. The current study performed a detailed characterization of hypoxia-induced changes in the transcriptomic profile of astrocytes in vitro. Human astrocytes were cultured under normoxic (5% CO2, 95% air) or hypoxic conditions (1% O2, 5% CO2, 94% N2) for 24 h, and the gene expression profile assessed by microarray analysis. In response to hypoxia 4904 genes were significantly differentially expressed (1306 upregulated and 3598 downregulated, FC ⼠2 and p ⤠0.05). Analysis of the significant differentially expressed transcripts identified an increase in immune response pathways, and dysregulation of signalling pathways, including HIF-1 (p = 0.002), and metabolism, including glycolysis (p = 0.006). To assess whether the hypoxia-induced metabolic gene changes observed affected metabolism at a functional level, both the glycolytic and mitochondrial flux were measured using an XF bioanalyser. In support of the transcriptomic data, under physiological conditions hypoxia significantly reduced mitochondrial respiratory flux (p = 0.0001) but increased basal glycolytic flux (p = 0.0313). However, when metabolically stressed, hypoxia reduced mitochondrial spare respiratory capacity (p = 0.0485) and both glycolytic capacity (p = 0.0001) and glycolytic reserve (p < 0.0001). In summary, the current findings detail hypoxia-induced changes in the astrocyte transcriptome in vitro, identifying potential targets for modifying the astrocyte response to reduced oxygen availability in pathological conditions associated with ischaemia/hypoxia, including manipulation of mitochondrial function, metabolism, and the immune response
Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
- âŚ