5,649 research outputs found

    A meteorological overview of the Pacific Exploratory Mission (PEM) Tropics period

    Get PDF
    NASA's Pacific Exploratory Mission-Tropics (PEM-T) experiment investigated the atmospheric chemistry of a large portion of the tropical and subtropical Pacific Basin during August to October 1996. This paper summarizes meteorological conditions over the PEM-T domain. Mean flow patterns during PEM-T are described. Important circulation systems near the surface include subtropical anticyclones, the South Pacific Convergence Zone (SPCZ), the Intertropical Convergence Zone (ITCZ), and middle latitude transient cyclones. The SPCZ and ITCZ are areas of widespread ascent and deep convection; however, there is relatively little lightning in these oceanic regions. A large area of subsidence is associated with the subtropical anticyclone centered near Easter Island. PEM-T occurred during a period of near normal sea surface temperatures. When compared to an 11 year climatology (1986-1996), relatively minor circulation anomalies are observed during PEM-T. Some of these circulation anomalies are consistent with much stronger anomalies observed during previous La Nina events. In general, however, the 1996 PEM-T period appears to be climatologically representative. Meteorological conditions for specific flights from each major operations area are summarized. The vertical distribution of ozone along selected DC-8 flights is described using the DIAL remote sensing system. These ozone distributions are related to thermodynamic soundings obtained during aircraft maneuvers and to backward trajectories that arrived at locations along the flight tracks. Most locations in the deep tropics are found to have relatively small values of tropospheric ozone. Backward trajectories calculated from global gridded analyses show that much of this air originates from the east and has not passed over land within 10 days. The deep convection associated with the ITCZ and SPCZ also influences the atmospheric chemistry of these regions. Flights over portions of the subtropics and middle latitudes document layers of greatly enhanced tropospheric ozone, sometimes exceeding 80 ppbv. In situ carbon monoxide in these layers often exceeds 90 ppbv. These regions are located near, and especially south of Tahiti, Easter Island, and Fiji. The layers of enhanced ozone usually correspond to layers of dry air, associated with widespread subsiding air. The backward trajectories show that air parcels arriving in these regions originate from the west, passing over Australia and even extending back to southern Africa. These are regions of biomass burning. The in situ chemical measurements support the trajectory-derived origins of these ozone plumes. Thus the enhanced tropospheric ozone over the central Pacific Basin may be due to biomass burning many thousands of kilometers away. Middle-latitude portions of the PEM-T area are influenced by transient cyclones, and the DC-8 traversed tropopause folds during several flights. The flight area just west of Ecuador experiences outflow from South America. Thus the biomass burning that is prevalent over portions of Brazil influences this area. Copyright 1999 by the American Geophysical Union

    Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone

    Get PDF
    The Pacific Exploratory Mission (PEM)-Tropics provided extensive aircraft data to study the atmospheric chemistry of tropospheric air in Pacific Ocean regions, extending from Hawaii to New Zealand and from Fiji to east of Easter Island. This region, especially the tropics, includes some of the cleanest tropospheric air of the world and, as such, is important for studying atmospheric chemical budgets and cycles. The region also provides a sensitive indicator of the global-scale impact of human activity on the chemistry of the troposphere, and includes such important features as the Pacific "warm pool," the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), and Walker Cell circulations. PEM-Tropics was conducted from August to October 1996. The ITCZ and SPCZ are major upwelling regions within the South Pacific and, as such, create boundaries to exchange of tropospheric air between regions to the north and south. Chemical data obtained in the near vicinity of the ITCZ and the SPCZ are examined. Data measured within the convergent zones themselves are not considered. The analyses show that air north and south of the convergent zones have different chemical signatures, and the signatures are reflective of the source regions and transport histories of the air. Air north of the ITCZ shows a modest urban/industrialized signature compared to air south of the ITCZ. The chemical signature of air south of the SPCZ is dominated by combustion emissions from biomass burning, while air north of the SPCZ is relatively clean and of similar composition to ITCZ south air. Chemical signature differences of air north and south of the zones are most pronounced at altitudes below 5 km, and, as such, show that the ITCZ and SPCZ are effective low-altitude barriers to the transport of tropospheric air. At altitudes of 8 to 10 km, chemical signatures are less dissimilar, and air backward trajectories (to 10 days) show cross-convergent-zone flow. At altitudes below about 5 km, little cross-zonal flow is observed. Chemical signatures presented include over 30 trace chemical species including ultrafine, fine, and heated-fine (250°C) aerosol. Copyright 1999 by the American Geophysical Union

    Fundamental Aspects of the ISM Fractality

    Get PDF
    The ubiquitous clumpy state of the ISM raises a fundamental and open problem of physics, which is the correct statistical treatment of systems dominated by long range interactions. A simple solvable hierarchical model is presented which explains why systems dominated by gravity prefer to adopt a fractal dimension around 2 or less, like the cold ISM and large scale structures. This has direct relation with the general transparency, or blackness, of the Universe.Comment: 6 pages, LaTeX2e, crckapb macro, no figure, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning

    Get PDF
    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning

    Training Load and Carbohydrate Periodization Practices of Elite Male Australian Football Players: Evidence of Fueling for the Work Required.

    Get PDF
    The authors aimed to quantify (a) the periodization of physical loading and daily carbohydrate (CHO) intake across an in-season weekly microcycle of Australian Football and (b) the quantity and source of CHO consumed during game play and training. Physical loading (via global positioning system technology) and daily CHO intake (via a combination of 24-hr recall, food diaries, and remote food photographic method) were assessed in 42 professional male players during two weekly microcycles comprising a home and away fixture. The players also reported the source and quantity of CHO consumed during all games (n = 22 games) and on the training session completed 4 days before each game (n = 22 sessions). The total distance was greater (p < .05) on game day (GD; 13 km) versus all training days. The total distance differed between training days, where GD-2 (8 km) was higher than GD-1, GD-3, and GD-4 (3.5, 0, and 7 km, respectively). The daily CHO intake was also different between training days, with reported intakes of 1.8, 1.4, 2.5, and 4.5 g/kg body mass on GD-4, GD-3, GD-2, and GD-1, respectively. The CHO intake was greater (p < .05) during games (59 ± 19 g) compared with training (1 ± 1 g), where in the former, 75% of the CHO consumed was from fluids as opposed to gels. Although the data suggest that Australian Football players practice elements of CHO periodization, the low absolute CHO intakes likely represent considerable underreporting in this population. Even when accounting for potential underreporting, the data also suggest Australian Football players underconsume CHO in relation to the physical demands of training and competition

    Gray's time-varying coefficients model for posttransplant survival of pediatric liver transplant recipients with a diagnosis of cancer

    Get PDF
    Transplantation is often the only viable treatment for pediatric patients with end-stage liver disease. Making well-informed decisions on when to proceed with transplantation requires accurate predictors of transplant survival. The standard Cox proportional hazards (PH) model assumes that covariate effects are time-invariant on right-censored failure time; however, this assumption may not always hold. Gray's piecewise constant time-varying coefficients (PC-TVC) model offers greater flexibility to capture the temporal changes of covariate effects without losing the mathematical simplicity of Cox PH model. In the present work, we examined the Cox PH and Gray PC-TVC models on the posttransplant survival analysis of 288 pediatric liver transplant patients diagnosed with cancer. We obtained potential predictors through univariable (P < 0.15) and multivariable models with forward selection (P < 0.05) for the Cox PH and Gray PC-TVC models, which coincide. While the Cox PH model provided reasonable average results in estimating covariate effects on posttransplant survival, the Gray model using piecewise constant penalized splines showed more details of how those effects change over time. © 2013 Yi Ren et al

    Ultrasound Does Not Detect Acute Changes in Glycogen in Vastus Lateralis of Man.

    Get PDF
    PURPOSE: To examine the validity of ultrasound (via cloud based software that measures pixilation intensity according to a scale of 0-100) to non-invasively assess muscle glycogen in human skeletal muscle. METHODS: In Study 1, 14 professional male rugby league players competed in an 80-minute competitive rugby league game. In Study 2 (in a randomized repeated measures design), 16 recreationally active males completed an exhaustive cycling protocol to deplete muscle glycogen followed by 36 hours of HIGH or LOW carbohydrate intake (8 v 3 g.kg body mass). In both studies, muscle biopsies and ultrasound scans were obtained from the vastus lateralis (at 50% of the muscle length) before and after match play in Study 1 and at 36 h after glycogen depletion in Study 2. RESULTS: Despite match play reducing (P0.05) were present between changes in muscle glycogen concentration and changes in ultrasound scores. CONCLUSION: Data demonstrate that ultrasound (as based on measures of pixilation intensity) is not valid to measure muscle glycogen status within the physiological range (i.e. 200-500 mmol.kg dw) that is applicable to exercise-induced muscle glycogen utilization and post-exercise muscle glycogen re-synthesis

    Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition

    Get PDF
    © 2020, The Author(s). The prevalence of sarcopenia depends on the definition used. There are, however, consistent sarcopenic characteristics, including a low muscle mass and muscle strength. Few studies have investigated the relationship between sarcopenia and genotype. A cross-sectional study was conducted with 307 community-dwelling ≥60-year-old women in South Cheshire, UK. Handgrip strength was assessed with a handgrip dynamometer and skeletal muscle mass was estimated using bioelectrical impedance. DNA was extracted from saliva (∼38%) or blood (∼62%) and 24 single-nucleotide polymorphisms (SNPs) were genotyped. Three established sarcopenia definitions - %Skeletal Muscle Mass (%SMM), Skeletal Muscle Mass Index (SMI) and European Working Group on Sarcopenia in Older People (EWGSOP) - were used to assess sarcopenia prevalence. Binary logistic regression with age as covariate was used to identify SNPs associated with sarcopenia. The prevalence of sarcopenia was: %SMM 14.7%, SMI 60.6% and EWGSOP 1.3%. Four SNPs were associated with the %SMM and SMI definitions of sarcopenia; FTO rs9939609, ESR1 rs4870044, NOS3 rs1799983 and TRHR rs7832552. The first three were associated with the %SMM definition, and TRHR rs7832552 with the SMI definition, but none were common to both sarcopenia definitions. The gene variants associated with sarcopenia may help proper counselling and interventions to prevent individuals from developing sarcopenia
    corecore