13 research outputs found

    Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression

    Get PDF
    The genetically heterogeneous triple-negative breast cancer (TNBC) continues to be an intractable disease, due to lack of effective targeted therapies. Gene amplification is a major event in tumorigenesis. Genes with amplification-dependent expression are being explored as therapeutic targets for cancer treatment. In this study, we have applied Analytical Multi-scale Identification of Recurring Events analysis and transcript quantification in the TNBC genome across 222 TNBC tumors and identified 138 candidate genes with positive correlation in copy number gain (CNG) and gene expression. siRNA-based loss-of-function screen of the candidate genes has validated EGFR, MYC, ASAP1, IRF2BP2, and CCT5 genes as drivers promoting proliferation in different TNBC cells. MYC, ASAP1, IRF2BP2, and CCT5 display frequent CNG and concurrent expression over 2173 breast cancer tumors (cBioPortal dataset). More frequently are MYC and ASAP1 amplified in TNBC tumors (>30%, n = 320). In particular, high expression of ASAP1, the ADP-ribosylation factor GTPase-activating protein, is significantly related to poor metastatic relapse-free survival of TNBC patients (n = 257, bc-GenExMiner). Furthermore, we have revealed that silencing of ASAP1 modulates numerous cytokine and apoptosis signaling components, such as IL1B, TRAF1, AIFM2, and MAP3K11 that are clinically relevant to survival outcomes of TNBC patients. ASAP1 has been reported to promote invasion and metastasis in various cancer cells. Our findings that ASAP1 is an amplification-dependent TNBC driver gene promoting TNBC cell proliferation, functioning upstream apoptosis components, and correlating to clinical outcomes of TNBC patients, support ASAP1 as a potential actionable target for TNBC treatment

    IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer

    Get PDF
    Antiestrogen resistance in estrogen receptor positive (ER+) breast cancer is associated with increased expression and activity of insulin-like growth factor 1 receptor (IGF1R). Here, a kinome siRNA screen has identified 10 regulators of IGF1R-mediated antiestrogen with clinical significance. These include the tamoxifen resistance suppressors BMPR1B, CDK10, CDK5, EIF2AK1, and MAP2K5, and the tamoxifen resistance inducers CHEK1, PAK2, RPS6KC1, TTK, and TXK. The p21-activated kinase 2, PAK2, is the strongest resistance inducer. Silencing of the tamoxifen resistance inducing genes, particularly PAK2, attenuates IGF1R-mediated resistance to tamoxifen and fulvestrant. High expression of PAK2 in ER+ metastatic breast cancer patients is correlated with unfavorable outcome after first-line tamoxifen monotherapy. Phospho-proteomics has defined PAK2 and the PAK-interacting exchange factors PIXΞ±/Ξ² as downstream targets of IGF1R signaling, which are independent from PI3K/ATK and MAPK/ERK pathways. PAK2 and PIXΞ±/Ξ² modulate IGF1R signaling-driven cell scattering. Targeting PIXΞ±/Ξ² entirely mimics the effect of PAK2 silencing on antiestrogen re-sensitization. These data indicate PAK2/PIX as an effector pathway in IGF1R-mediated antiestrogen resistance

    Multi-targeted kinase inhibition alleviates mTOR inhibitor resistance in triple-negative breast cancer

    Get PDF
    Purpose: Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for effective treatment of the refractory TNBC subtype. Methods: A broad kinase inhibitor screen was applied to profile the proliferative responses of TNBC cells, revealing resistance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation. Results: The combination treatment with AEE788 and rapalog effectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment. Conclusions: mTOR signaling is highly activated in TNBC tumors. As single rapalog treatment is insufficient to block mTOR signaling in rapalog-resistant TNBC cells, our results thus provide a potential multi-kinase inhibitor combinatorial strategy to overcome mTOR-targeted therapy resistance in TNBC cells

    A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy

    Get PDF
    Background: The effective treatment of triple-negative breast cancer (TNBC) remains a profound clinical challenge. Despite frequent epidermal growth factor receptor (EGFR) overexpression and reliance on downstream signalling pathways in TNBC, resistance to EGFR-tyrosine kinase inhibitors (TKIs) remains endemic. Therefore, the identification of targeted agents, which synergise with current therapeutic options, is paramount. Methods: Compound-based, high-throughput, proliferation screening was used to profile the response of TNBC cell lines to EGFR-TKIs, western blotting and siRNA transfection being used to examine the effect of inhibitors on EGFR-mediated signal transduction and cellular dependence

    Transcriptional Regulation of PP2A-AΞ± Is Mediated by Multiple Factors Including AP-2Ξ±, CREB, ETS-1, and SP-1

    Get PDF
    Protein phosphatases-2A (PP-2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunits, PP2A-AΞ±/Ξ², provide a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-AΞ±/Ξ² leads to carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of the mouse PP2A-AΞ± gene. Our results demonstrate that the proximal promoter of the mouse PP2A-AΞ± gene contains numerous cis-elements for the binding of CREB, ETS-1, AP-2Ξ±, SP-1 besides the putative TFIIB binding site (BRE) and the downstream promoter element (DPE). Gel mobility shifting assays revealed that CREB, ETS-1, AP-2Ξ±, and SP-1 all bind to PP2A-AΞ± gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative regulation, CREB, ETS-1 and AP-2AΞ± all positively regulate the promoter of the PP2A-AΞ± gene. ChIP assays further confirm that all the above transcription factors participate the regulation of PP2A-AΞ± gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-AΞ± gene

    Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms

    Get PDF
    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44+ cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many β€œstemness” genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44+ tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms
    corecore