3,758 research outputs found
Learning View-Model Joint Relevance for 3D Object Retrieval
3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to incomplete information for 3D object representation. In this paper, we propose to jointly learn the view-model relevance among 3D objects for retrieval, in which the 3D objects are formulated in different graph structures. With the view information, the multiple views of 3D objects are employed to formulate the 3D object relationship in an object hypergraph structure. With the model data, the model-based features are extracted to construct an object graph to describe the relationship among the 3D objects. The learning on the two graphs is conducted to estimate the relevance among the 3D objects, in which the view/model graph weights can be also optimized in the learning process. This is the first work to jointly explore the view-based and model-based relevance among the 3D objects in a graph-based framework. The proposed method has been evaluated in three data sets. The experimental results and comparison with the state-of-the-art methods demonstrate the effectiveness on retrieval accuracy of the proposed 3D object retrieval method
Clinical comparison between a percutaneous hydraulic pressure delivery system and balloon tamp system using high-viscosity cement for the treatment of osteoporotic vertebral compression fractures
OBJECTIVES: Osteoporotic vertebral compression fractures (OVCFs) affect the elderly population, especially postmenopausal women. Percutaneous kyphoplasty is designed to treat painful vertebral compression fractures for which conservative therapy has been unsuccessful. High-viscosity cement can be injected by either a hydraulic pressure delivery system (HPDS) or a balloon tamp system (BTS). Therefore, the purpose of this study was to compare the safety and clinical outcomes of these two systems. METHODS: A random, multicenter, prospective study was performed. Clinical and radiological assessments were carried out, including assessments of general surgery information, visual analog scale, quality of life, cement leakage, and height and angle restoration. RESULTS: Using either the HPDS or BTS to inject high-viscosity cement effectively relieved pain and improved the patients’ quality of life immediately, and these effects lasted at least two years. The HPDS using high-viscosity cement reduced cost, surgery time, and radiation exposure and showed similar clinical results to those of the BTS. In addition, the leakage rate and the incidence of adjacent vertebral fractures after the HPDS treatment were reduced compared with those after treatment using the classic vertebroplasty devices. However, the BTS had better height and angle restoration abilities. CONCLUSIONS: The percutaneous HPDS with high-viscosity cement has similar clinical outcomes to those of traditional procedures in the treatment of vertebral fractures in the elderly. The HPDS with high-viscosity cement is better than the BTS in the treatment of mild and moderate OVCFs and could be an alternative method for the treatment of severe OVCFs
Use of low-dose computed tomography to assess pulmonary tuberculosis among healthcare workers in a tuberculosis hospital
BACKGROUND: According to the World Health Organization, China is one of 22 countries with serious tuberculosis (TB) infections and one of the 27 countries with serious multidrug-resistant TB strains. Despite the decline of tuberculosis in the overall population, healthcare workers (HCWs) are still at a high risk of infection. Compared with high-income countries, the TB prevalence among HCWs is higher in low- and middle-income countries. Low-dose computed tomography (LDCT) is becoming more popular due to its superior sensitivity and lower radiation dose. However, there have been no reports about active pulmonary tuberculosis (PTB) among HCWs as assessed with LDCT. The purposes of this study were to examine PTB statuses in HCWs in hospitals specializing in TB treatment and explore the significance of the application of LDCT to these workers. METHODS: This study retrospectively analysed the physical examination data of healthcare workers in the Beijing Chest Hospital from September 2012 to December 2015. Low-dose lung CT examinations were performed in all cases. The comparisons between active and inactive PTB according to the CT findings were made using the Pearson chi-square test or the Fisher’s exact test. Comparisons between the incidences of active PTB in high-risk areas and non-high-risk areas were performed using the Pearson chi-square test. Analyses of active PTB were performed according to different ages, numbers of years on the job, and the risks of the working areas. Active PTB as diagnosed by the LDCT examinations alone was compared with the final comprehensive diagnoses, and the sensitivity and positive predictive value were calculated. RESULTS: A total of 1 012 participants were included in this study. During the 4-year period of medical examinations, active PTB was found in 19 cases, and inactive PTB was found in 109 cases. The prevalence of active PTB in the participants was 1.24%, 0.67%, 0.81%, and 0.53% for years 2012 to 2015. The corresponding incidences of active PTB among the tuberculosis hospital participants were 0.86%, 0.41%, 0.54%, and 0.26%. Most HCWs with active TB (78.9%, 15/19) worked in the high-risk areas of the hospital. There was a significant difference in the incidences of active PTB between the HCWs who worked in the high-risk and non-high-risk areas (odds ratio [OR], 14.415; 95% confidence interval (CI): 4.733 – 43.896). Comparisons of the CT signs between the active and inactive groups via chi-square tests revealed that the tree-in-bud, cavity, fibrous shadow, and calcification signs exhibited significant differences (P = 0.000, 0.021, 0.001, and 0.024, respectively). Tree-in-bud and cavity opacities suggest active pulmonary tuberculosis, whereas fibrous shadow and calcification opacities are the main features of inactive pulmonary tuberculosis. Comparison with the final comprehensive diagnoses revealed that the sensitivity and positive predictive value of the diagnoses of active PTB based on LDCT alone were 100% and 86.4%, respectively. CONCLUSIONS: Healthcare workers in tuberculosis hospitals are a high-risk group for active PTB. Yearly LDCT examinations of such high-risk groups are feasible and necessary. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40249-017-0274-6) contains supplementary material, which is available to authorized users
Enhancement of Drought Tolerance in Trifoliate Orange by Mycorrhiza: Changes in Root Sucrose and Proline Metabolisms
Sucrose and proline metabolisms are often associated with drought tolerance of plants. This study was conducted to investigate the effects of two arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae and Paraglomus occultum) on root biomass, lateral root number, root sucrose and proline metabolisms in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) or drought stress (DS). All the AMF treatments significantly increased root dry weight, taproot length, and the number of lateral roots in 1st, 2nd, and 3rd class under WW and DS. Mycorrhizal seedlings conferred considerably higher fructose and glucose concentrations but lower sucrose accumulation, regardless of soil water status. Under DS, F. mosseae treatment significantly increased root sucrose synthase (SS, degradative direction) and sucrose phosphate synthase (SPS) activity but deceased root acid invertase (AI) and neutral invertase (NI) activity, and P. occultum inoculation markedly increased root AI, NI, SS, and SPS activities. AMF treatments led to a lower proline accumulation in roots, in company with lower activities of Δ1-pyrroline-5-carboxylate synthetase (P5CS), δ-ornithine aminotransferase (OAT), Δ1-pyrroline-5-carboxylate reductase (P5CR), and proline dehydrogenase (ProDH) in roots. It appears that the AM symbiosis induced greater root development and sucrose and proline metabolisms to adapt DS
Influence of Reducing Agents on Biosafety and Biocompatibility of Gold Nanoparticles
Extensive biomedical applications of nanoparticles are mainly determined by their safety and compatibility in biological systems. The aim of this study was to compare the biosafety and biocompatibility of gold nanoparticles (GNPs) prepared with HEPES buffer, which is popular for cell culture, and sodium citrate, a frequent reducing agent. From experimental results on the body weight and organ coefficients of acute oral toxicity tests, it could be observed that HEPES-prepared GNPs are biologically safer than citric-prepared GNPs at the same dose of 500Â ÎĽg/kg. The in vitro cell viability was higher for HEPES-prepared GNPs than citric-prepared GNPs at 5.0- and 10.0-ug/mL concentrations. More reactive oxygen species (ROS) were generated in the cell suspension when supplemented with citric-prepared GNPs than HEPES-prepared GNPs when their concentrations were higher than 20Â ÎĽg/mL. The results stated that HEPES-prepared GNPs had better biosafety and biocompatibility than citric-prepared GNPs. This study not only revealed the influence of reducing agent on biosafety and biocompatibility of nanomaterials but also provided accumulative evidence for nanomaterials in biomedical applications. [Figure: see text
- …