106 research outputs found

    Motile sperm organelle morphology examination (MSOME): intervariation study of normal sperm and sperm with large nuclear vacuoles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the motile sperm organelle morphology examination (MSOME) was developed only as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in evaluation of semen quality, with potential clinical repercussions. The present study aimed to evaluate individual variations in the motile sperm organelle morphology examination (MSOME) analysis after a time interval.</p> <p>Methods</p> <p>Two semen samples were obtained from 240 men from an unselected group of couples undergoing infertility investigation and treatment. Mean time interval between the two semen evaluations was 119 +/- 102 days. No clinical or surgical treatment was realized between the two observations. Spermatozoa were analyzed at greater than or equal to 8400× magnification by inverted microscope equipped with DIC/Nomarski differential interference contrast optics. At least 200 motile spermatozoa per semen sample were evaluated and percentages of normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV/one or more vacuoles occupying >50% of the sperm nuclear area) were determined. A spermatozoon was classified as morphologically normal when it exhibited a normal nucleus (smooth, symmetric and oval nucleus, width 3.28 +/- 0.20 μm, length 4.75 +/- 0.20 μm/absence of vacuoles occupying >4% of nuclear area) as well as acrosome, post-acrosomal lamina, neck and tail, besides not presenting cytoplasm around the head. One examiner, blinded to subject identity, performed the entire study.</p> <p>Results</p> <p>Mean percentages of morphologically normal and LNV spermatozoa were identical in the two MSOME analyses (1.6 +/- 2.2% vs. 1.6 +/- 2.1% <it>P </it>= 0.83 and 25.2 +/- 19.2% vs. 26.1 +/- 19.0% <it>P </it>= 0.31, respectively). Regression analysis between the two samples revealed significant positive correlation for morphologically normal and for LNV spermatozoa (r = 0.57 95% CI:0.47-0.65 <it>P </it>< 0.0001 and r = 0.50 95% CI:0.38-0.58 <it>P </it>< 0.0001, respectively).</p> <p>Conclusions</p> <p>The significant positive correlation and absence of differences between two sperm samples evaluated after a time interval with respect to normal morphology and LNV spermatozoa indicated that MSOME seems reliable (at least for these two specific sperm forms) for analyzing semen. The present result supports the future use of MSOME as a routine method for semen analysis.</p

    Efficacy of hyaluronic acid binding assay in selecting motile spermatozoa with normal morphology at high magnification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study aimed to evaluate the efficacy of the hyaluronic acid (HA) binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x).</p> <p>Methods</p> <p>A total of 16592 prepared spermatozoa were selected and classified into two groups: Group I, spermatozoa which presented their head attached to an HA substance (HA-bound sperm), and Group II, those spermatozoa that did not attach to the HA substance (HA-unbound sperm). HA-bound and HA-unbound spermatozoa were evaluated according to the following sperm forms: 1-Normal morphology: normal nucleus (smooth, symmetric and oval configuration, length: 4.75+/-2.8 μm and width: 3.28+/-0.20 μm, no extrusion or invagination and no vacuoles occupied more than 4% of the nuclear area) as well as acrosome, post-acrosomal lamina, neck, tail, besides not presenting a cytoplasmic droplet or cytoplasm around the head; 2-Abnormalities of nuclear form (a-Large/small; b-Wide/narrow; c-Regional disorder); 3-Abnormalities of nuclear chromatin content (a-Vacuoles: occupy >4% to 50% of the nuclear area and b-Large vacuoles: occupy >50% of the nuclear area) using a high magnification (8400x) microscopy system.</p> <p>Results</p> <p>No significant differences were obtained with respect to sperm morphological forms and the groups HA-bound and HA-unbound. 1-Normal morphology: HA-bound 2.7% and HA-unbound 2.5% (P = 0.56). 2-Abnormalities of nuclear form: a-Large/small: HA-bound 1.6% vs. HA-unbound 1.6% (P = 0.63); b-Wide/narrow: HA-bound 3.1% vs. HA-unbound 2.7% (P = 0.13); c-Regional disorders: HA-bound 4.7% vs. HA-unbound 4.4% (P = 0.34). 3. Abnormalities of nuclear chromatin content: a-Vacuoles >4% to 50%: HA-bound 72.2% vs. HA-unbound 72.5% (P = 0.74); b-Large vacuoles: HA-bound 15.7% vs. HA-unbound 16.3% (P = 0.36).</p> <p>Conclusions</p> <p>The findings suggest that HA binding assay has limited efficacy in selecting motile spermatozoa with normal morphology at high magnification.</p

    Impact of female age and male infertility on ovarian reserve markers to predict outcome of assisted reproduction technology cycles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to assess the capability of ovarian reserve markers, including baseline FSH levels, baseline anti-Müllerian hormone (AMH) levels, and antral follicle count (AFC), as predictors of live births during IVF cycles, especially for infertile couples with advanced maternal age and/or male factors.</p> <p>Methods</p> <p>A prospective cohort of 336 first IVF/ICSI cycles undergoing a long protocol with GnRH agonist was investigated. Patients with endocrine disorders or unilateral ovaries were excluded.</p> <p>Results</p> <p>Among the ovarian reserve tests, AMH and age had a greater area under the receiving operating characteristic curve than FSH in predicting live births. Furthermore, AMH and age were the sole predictive factors of live births for women greater than or equal to 35 years of age; while AMH was the major determinant of live births for infertile couples with absence of male factors by multivariate logistic regression analysis. However, all the studied ovarain reserve tests were not preditive of live births for women < 35 years of age or infertile couples with male factors.</p> <p>Conclusion</p> <p>The serum AMH levels were prognostic for pregnancy outcome for infertile couples with advanced female age or absence of male factors. The predictive capability of ovarian reserve tests is clearly influenced by the etiology of infertility.</p

    Efficacy of the motile sperm organelle morphology examination (MSOME) in predicting pregnancy after intrauterine insemination

    Get PDF
    Background: Although the motile sperm organelle morphology examination (MSOME) was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP) after intrauterine insemination (IUI).Methods: A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400x magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined.Results: Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%). Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1%) compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019). Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003). The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy was 50% sensitive with a 40% positive predictive value and 79% specificity with an 85% negative predictive value. The efficacy of using the percentage of normal sperm morphology by MSOME in predicting pregnancy was 65%.Conclusions: The present findings support the use of high-magnification microscopy both for selecting spermatozoa and as a routine method for analysing semen before performing IUI

    Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks

    Get PDF
    ABSTRACT By using an unsupervised cluster analyzer, we have identified a local structural alphabet composed of 16 folding patterns of five consecutive C � (“protein blocks”). The dependence that exists between successive blocks is explicitly taken into account. A Bayesian approach based on the relation protein block-amino acid propensity is used for prediction and leads to a success rate close to 35%. Sharing sequence windows associated with certain blocks into “sequence families ” improves the prediction accuracy by 6%. This prediction accuracy exceeds 75 % when keeping the first four predicted protein blocks at each site of the protein. In addition, two different strategies are proposed: the first one defines the number of protein blocks in each site needed for respecting a user-fixed prediction accuracy, and alternatively, the second one defines the different protein sites to be predicted with a user-fixed number of blocks and a chosen accuracy. This last strategy applied to the ubiquitin conjugating enzyme (�/ � protein) shows that 91 % of the sites may be predicted with a prediction accuracy larger than 77 % considering only three blocks per site. The prediction strategies proposed improve our knowledge about sequence-structure dependence and should be very useful in ab initio protein modelling. Proteins 2000;41:271–287. © 2000 Wiley-Liss, Inc. Key words: protein backbone structure; unsupervised classifier; structure-sequence relationships; structure prediction; protein block; Bayesian approach; prediction strategie

    Influence of Soil Fabrics and Stress State on the Undrained Instability of Overconsolidated Binary Granular Assemblies

    No full text
    The instability of saturated granular soils in field conditions generates drastic collapse in terms of runoff deformation because of its failing to sustain naturally applied loading conditions such as earthquakes, wave actions and vibrations. The objective of this laboratory investigation is to study the effects of the depositional methods, overconsolidation ratio (OCR) and confining pressure on the undrained instability shear strength of medium dense (Dr = 52%) sand-silt mixtures under static loading conditions. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with fines content ranging from 0% to 40%. Three confining pressures were used (P’c = 100, 200 and 300 kPa) in this research. The sand-silt mixture samples were prepared using two depositional methods, dry funnel pluviation (DFP) and wet deposition (WD), and subjected to two OCRs (1 and 2). The obtained instability lines and friction angles indicate that the funnel pluviated samples exhibit strain hardening compared to the wet deposited samples and that normally consolidated and overconsolidated wet deposited clean sandy samples were very sensitive to static liquefaction. The test results also indicate that the instability friction angle increases with the increase in the OCR expressing soil dilative character tendency increase. The instability friction angle decreases with the increase in the fines content for DFP and the inverse tendency was observed in the case of WD
    corecore