647 research outputs found
The future of very large subsonic transports
The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and modular design. The VLST will encounter severe restrictions on weight, ground flotation, span, length, and door height to operate at current airports/bases, gates, and cargo loading systems. One option under consideration is for a sea-based VLST, either a conventional seaplane or Wing-In-Ground effect (WIG) vehicle, which would allow greater operational flexibility, while introducing other design challenges such as water impact loads and salt-water corrosion. Lockheed Martin is currently developing a floatplane version of the C-130 Hercules which will provide experience with a modern sea-based aircraft. In addition to its own ongoing research activities, Lockheed Martin is also participating in the NASA Advanced Subsonic Technology, High Speed Research (HSR), and other programs which address some of the technologies needed for the VLST. The VLST will require NASA and US aerospace companies to work together to develop new capabilities and technologies for make the VLST a viable part of transportation beyond 2000
Development of Screening Tools for the Interpretation of Chemical Biomonitoring Data
Evaluation of a larger number of chemicals in commerce from the perspective of potential human health risk has become a focus of attention in North America and Europe. Screening-level chemical risk assessment evaluations consider both exposure and hazard. Exposures are increasingly being evaluated through biomonitoring studies in humans. Interpreting human biomonitoring results requires comparison to toxicity guidance values. However, conventional chemical-specific risk assessments result in identification of toxicity-based exposure guidance values such as tolerable daily intakes (TDIs) as applied doses that cannot directly be used to evaluate exposure information provided by biomonitoring data in a health risk context. This paper describes a variety of approaches for development of screening-level exposure guidance values with translation from an external dose to a biomarker concentration framework for interpreting biomonitoring data in a risk context. Applications of tools and concepts including biomonitoring equivalents (BEs), the threshold of toxicologic concern (TTC), and generic toxicokinetic and physiologically based toxicokinetic models are described. These approaches employ varying levels of existing chemical-specific data, chemical class-specific assessments, and generic modeling tools in response to varying levels of available data in order to allow assessment and prioritization of chemical exposures for refined assessment in a risk management context
Recommended from our members
Design considerations of a pair of power leads for fast-cycling superconducting accelerator magnets operating at 2 Tesla and 100 kA
Recently proposed injector accelerator, Low Energy Ring (LER) for the LHC and fast cycling accelerators for the proton drivers (SF-SPS at CERN and DSF-MR at Fermilab) require that a new magnet technology be developed. In support of this accelerator program, a pair of power leads needs to be developed to close the loop between the power supply and accelerator system. The magnet proposed to be used will be a modified transmission line magnet technology that would allow for accelerator quality magnetic field sweep of 2 T/s. The transmission line conductor will be using HTS technology and cooled with supercritical helium at 5 K. The power leads consist of two sections; upper one is a copper and lower section will be using HTS tapes. The accelerator magnet will be ramped to 100 kA in a second and almost immediately ramped down to zero in one second. This paper outlines the design considerations for the power leads to meet the operational requirements for the accelerator system. The power leads thermal analysis during the magnet powering cycle will be included
Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
Recommended from our members
A Health-Related Quality of Life Measure for Patients Who Undergo Minimally Invasive Glaucoma Surgery
PurposeTo develop a patient-reported outcome measure to assess the impact of glaucoma and treatment, including minimally invasive glaucoma surgery (MIGS).DesignObservational study before and after concomitant cataract and Food and Drug Administration-approved implantable MIGS device surgery.SettingSurvey administration was on a computer, iPad, or similar device.Patient population184 adults completed the baseline survey, 124 a survey 3 months after surgery, and 106 the 1-month test-retest reliability survey. The age range was 37 to 89 (average age = 72). Most were female (57%), non-Hispanic White (81%), and had a college degree (56%).Main outcome measuresThe Glaucoma Outcomes Survey (GOS) assesses functional limitations (27 items), vision-related symptoms (7 items), psychosocial issues (7 items), and satisfaction with microinvasive glaucoma surgery (1 item). These multiple-item scales were scored on a 0 to 100 range, with a higher score indicating worse health.ResultsInternal consistency reliability estimates ranged from 0.75 to 0.93, and 1-month test-retest intraclass correlations ranged from 0.83 to 0.92 for the GOS scales. Product-moment correlations among the scales ranged from 0.56 to 0.60. Improvement in visual acuity in the study eye from baseline to the 3-month follow-up was significantly related to improvements in GOS functional limitations (r = 0.18, P = .0485), vision-related symptoms (r = 0.19, P = .0386), and psychosocial concerns (r = 0.18, P = .0503). Responders to treatment ranged from 17% for vision-related symptoms to 48% for functional limitations.ConclusionsThis study supports using the GOS for ophthalmic procedures such as MIGS. Further evaluation of the GOS in different patient subgroups and clinical settings is needed
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Postmenopausal hormones and sleep quality in the elderly: a population based study
<p>Abstract</p> <p>Background</p> <p>Sleep disturbance and insomnia are commonly reported by postmenopausal women. However, the relationship between hormone therapy (HT) and sleep disturbances in postmenopausal community-dwelling adults is understudied. Using data from the multicenter Study of Osteoporotic Fractures (SOF), we tested the relationship between HT and sleep-wake estimated from actigraphy.</p> <p>Methods</p> <p>Sleep-wake was ascertained by wrist actigraphy in 3,123 women aged 84 ± 4 years (range 77-99) from the Study of Osteoporotic Fractures (SOF). This sample represents 30% of the original SOF study and 64% of participants seen at this visit. Data were collected for a mean of 4 consecutive 24-hour periods. Sleep parameters measured objectively included total sleep time, sleep efficiency (SE), sleep latency, wake after sleep onset (WASO), and nap time. All analyses were adjusted for potential confounders (age, clinic site, race, BMI, cognitive function, physical activity, depression, anxiety, education, marital status, age at menopause, alcohol use, prior hysterectomy, and medical conditions).</p> <p>Results</p> <p>Actigraphy measurements were available for 424 current, 1,289 past, and 1,410 never users of HT. Women currently using HT had a shorter WASO time (76 vs. 82 minutes, P = 0.03) and fewer long-wake (≥ 5 minutes) episodes (6.5 vs. 7.1, P = 0.004) than never users. Past HT users had longer total sleep time than never users (413 vs. 403 minutes, P = 0.002). Women who never used HT had elevated odds of SE <70% (OR,1.37;95%CI,0.98-1.92) and significantly higher odds of WASO ≥ 90 minutes (OR,1.37;95%CI,1.02-1.83) and ≥ 8 long-wake episodes (OR,1.58;95%CI,1.18-2.12) when compared to current HT users.</p> <p>Conclusions</p> <p>Postmenopausal women currently using HT had improved sleep quality for two out of five objective measures: shorter WASO and fewer long-wake episodes. The mechanism behind these associations is not clear. For postmenopausal women, starting HT use should be considered carefully in balance with other risks since the vascular side-effects of hormone replacement may exceed its beneficial effects on sleep.</p
- …