1,679 research outputs found

    Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine

    Get PDF
    Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes

    Plasticity in transmission strategies of the malaria parasite, Plasmodium chabaudi : environmental and genetic effects

    Get PDF
    Parasites may alter their behaviour to cope with changes in the within-host environment. In particular, investment in transmission may alter in response to the availability of parasite resources or host immune responses. However, experimental and theoretical studies have drawn conflicting conclusions regarding parasites' optimal (adaptive) responses to deterioration in habitat quality. We analyse data from acute infections with six genotypes of the rodent malaria species to quantify how investment in transmission (gametocytes) is influenced by the within-host environment. Using a minimum of modelling assumptions, we find that proportional investment in gametocytogenesis increases sharply with host anaemia and also increases at low parasite densities. Further, stronger dependence of investment on parasite density is associated with greater virulence of the parasite genotype. Our study provides a robust quantitative framework for studying parasites' responses to the host environment and whether these responses are adaptive, which is crucial for predicting the short-term and evolutionary impact of transmission-blocking treatments for parasitic diseases

    The impact of mutation and gene conversion on the local diversification of antigen genes in African trypanosomes

    Get PDF
    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair

    Failure of vaccination to prevent outbreaks of foot-and-mouth disease

    Get PDF
    Outbreaks of foot-and-mouth disease persist in dairy cattle herds in Saudi Arabia despite revaccination at intervals of 4-6 months. Vaccine trials provide data on antibody responses following vaccination. Using this information we developed a mathematical model of the decay of protective antibodies with which we estimated the fraction of susceptible animals at a given time after vaccination. The model describes the data well, suggesting over 95% take with an antibody half-life of 43 days. Farm records provided data on the time course of five outbreaks. We applied a 'SLIR' epidemiological model to these data, fitting a single parameter representing disease transmission rate. The analysis provides estimates of the basic reproduction number R(0), which may exceed 70 in some cases. We conclude that the critical intervaccination interval which would provide herd immunity against FMDV is unrealistically short, especially for heterologous challenge. We suggest that it may not be possible to prevent foot-and-mouth disease outbreaks on these farms using currently available vaccines

    Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies

    Get PDF
    Understanding the factors influencing vaccination campaign effectiveness is vital in designing efficient disease elimination programmes. We investigated the importance of spatial heterogeneity in vaccination coverage and human-mediated dog movements for the elimination of endemic canine rabies by mass dog vaccination in Region VI of the Philippines (Western Visayas). Household survey data was used to parameterise a spatially-explicit rabies transmission model with realistic dog movement and vaccination coverage scenarios, assuming a basic reproduction number for rabies drawn from the literature. This showed that heterogeneous vaccination reduces elimination prospects relative to homogeneous vaccination at the same overall level. Had the three vaccination campaigns completed in Region VI in 2010–2012 been homogeneous, they would have eliminated rabies with high probability. However, given the observed heterogeneity, three further campaigns may be required to achieve elimination with probability 0.95. We recommend that heterogeneity be reduced in future campaigns through targeted efforts in low coverage areas, even at the expense of reduced coverage in previously high coverage areas. Reported human-mediated dog movements did not reduce elimination probability, so expending limited resources on restricting dog movements is unnecessary in this endemic setting. Enhanced surveillance will be necessary post-elimination, however, given the reintroduction risk from long-distance dog movements

    The prevalences of Salmonella Genomic Island 1 variants in human and animal Salmonella Typhimurium DT104 are distinguishable using a Bayesian approach

    Get PDF
    Throughout the 1990s, there was an epidemic of multidrug resistant Salmonella Typhimurium DT104 in both animals and humans in Scotland. The use of antimicrobials in agriculture is often cited as a major source of antimicrobial resistance in pathogenic bacteria of humans, suggesting that DT104 in animals and humans should demonstrate similar prevalences of resistance determinants. Until very recently, only the application of molecular methods would allow such a comparison and our understanding has been hindered by the fact that surveillance data are primarily phenotypic in nature. Here, using large scale surveillance datasets and a novel Bayesian approach, we infer and compare the prevalence of Salmonella Genomic Island 1 (SGI1), SGI1 variants, and resistance determinants independent of SGI1 in animal and human DT104 isolates from such phenotypic data. We demonstrate differences in the prevalences of SGI1, SGI1-B, SGI1-C, absence of SGI1, and tetracycline resistance determinants independent of SGI1 between these human and animal populations, a finding that challenges established tenets that DT104 in domestic animals and humans are from the same well-mixed microbial population

    Care Works: Come Home for Care

    Get PDF
    Essential to executing the mission and vision of an academic medical center (AMC) is attracting and retaining the highest quality employees. As demonstrated by VCU’s commitment to the Great Place Initiative, the University has recognized that employees in today’s highly competitive environment demand competitive salary and benefit packages. Research has shown that access to high quality, on-site healthcare services provides significant benefits to both employees and employers, such as increased productivity and reduced wellness costs[1]. Yet, a query of de-identified patient records indicated that only a small percentage of VCU employees (~18%) utilized the health services provided by VCU Health System in 2016. VCU’s peer-institutions, other distinguished AMCs, and industry employers have implemented a variety of programs such as concierge services, expedited appointments, on-campus clinics, and lower copays to remain competitive and responsive to their employees. In light of the depth of these programs, Team CareWorks completed a comparative review of health and wellness related employee-specific benefits to determine how VCU might enhance its benefits through initiatives such as on-site medical clinics, prioritized appointments, telehealth, and on-site pharmacies. Informed by the comparative analysis, Team CareWorks will provide recommendations that VCU can use to: capitalize on the integrated relationship with VCU Health to enrich the health and wellness of its outstanding assets (the employees); and provide enhanced benefits to employees by making VCU Health more easily accessible and more appealing as a Medical Home. [1]Berry, Leonard, Ann M. Mirabito, & William B. Baun. “What\u27s the Hard Return on Employee Wellness Programs?” (2010). Harvard Business Review, December 2010.. Available at SSRN: https://ssrn.com/abstract=206487

    Pioglitazone, an Insulin Sensitizing Drug, Attenuates the Development of Kidney and Liver Disease in the PCK Rodent Model of Polycystic Kidney Disease

    Get PDF
    poster abstractPolycystic kidney disease is a genetic disorder characterized by growth of fluid-filled cysts predominately in kidney and liver. The only treatment currently available is the removal/aspiration of the largest cysts or organ transplantation. Promising pharmaceutical agents in clinical trials interfere with the action of hormones that increase cAMP thereby inhibiting secretion of Cl-, and compensatory fluid flux, into the cysts. Other treatments proposed include chemotherapeutic and immunosuppressive drugs that interfere with cellular proliferation as well as with signaling pathways for Cl- secretion. Long-term use of these agents will have multiple side effects. Based on a recent observation that peroxisome proliferator activated receptor γ agonists such as Actos (pioglitazone) and Avandia (rosiglitazone) decrease mRNA levels of a Cl- transport protein and the Cl- secretory response to vasopressin stimulation in cultured renal cells, it is hypothesized that PPARγ agonists will inhibit cyst growth. The current studies show that a 7 or 14 week feeding regimen of 20 mg/Kg BW pioglitazone inhibits renal and hepatic bile duct cyst growth in a rodent model orthologous to human PKD. In addition, the degree of renal cortical fibrosis was diminished in the pioglitazone-treated animals after 14 weeks. These results suggest that PPARγ agonists may be effective in controlling both renal and hepatic cyst growth and renal fibrotic development in polycystic kidney disease
    corecore