1,453 research outputs found
Recommended from our members
Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator.
The circadian oscillator, an internal time-keeping device found in most organisms, enables timely regulation of daily biological activities by maintaining synchrony with the external environment. The mechanistic basis underlying the adjustment of circadian rhythms to changing external conditions, however, has yet to be clearly elucidated. We explored the mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of circadian rhythms, to understand the regulation of circadian period. To identify the key mechanisms involved in the circadian response to nicotinamide, we developed a systematic and practical modeling framework based on the identification and comparison of gene regulatory dynamics. Our mathematical predictions, confirmed by experimentation, identified key transcriptional regulatory mechanisms of circadian period and uncovered the role of blue light in the response of the circadian oscillator to nicotinamide. We suggest that our methodology could be adapted to predict mechanisms of drug action in complex biological systems
Comparison of dimensional accuracies of stereolithography and powder binder printing
This paper presents a comparative experimental investigation of the dimensional accuracies of two widely used rapid prototyping (RP) processes: stereolithography (SLA) and powder binder printing (PBP). Four replicates of a purpose-designed component using each RP process were fabricated, and the measurements of the internal and external features of all surfaces were performed using a general-purpose coordinate measurement machine. The results showed that in both cases, the main cause of dimensional variations was the volumetric change inherent in the process. The precision of SLA was far better than that of PBP. The dimensional accuracy of SLA was better in the z direction, whereas PBP produced better dimensional accuracy in the x–y plane. In both RP processes, the height error consisted of two components: constant error and cumulative error. The constant error component was equal to the datum surface error. SLA yielded an average datum surface error that was 68 % higher than in PBP. The height error of SLA improved with the increase in nominal height, whereas it deteriorated in PBP
The reactive metabolite target protein database (TPDB) – a web-accessible resource
BACKGROUND: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. DESCRIPTION: The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. CONCLUSION: The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available a
Differential Encoding of Factors Influencing Predicted Reward Value in Monkey Rostral Anterior Cingulate Cortex
Background: The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. Methods and Findings: We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1–4 sequential color discrimination trials to obtain a reward of 1–3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount
Evaluation of the in vitro skin permeation of antiviral drugs from penciclovir 1% cream and acyclovir 5% cream used to treat herpes simplex virus infection
<p>Abstract</p> <p>Background</p> <p>Herpes simplex virus infection (HSV) is a common and ubiquitous infection of the skin which causes mucocutaneous lesions called cold sores (herpes labialis) or fever blisters. It is estimated that approximately 80% of the population worldwide are carriers of the Herpes simplex virus, approximately 40% suffer from recurrent recurrent infections. This study evaluates the <it>in vitro </it>skin permeation and penetration of penciclovir and acyclovir from commercialized creams for the treatment of herpes labialis (cold sores), using non viable excised human abdominal skin samples, which were exposed to 5 mg/cm<sup>2 </sup>of acyclovir 5% cream or penciclovir 1% cream.</p> <p>Methods</p> <p>After 24 h of cream application, excess cream was washed off and layers of stratum corneum were removed by successive tape stripping. Amounts of active ingredients having penetrated through the skin were measured, as well as the amounts in the washed-off cream, in skin strips and creams remaining in the skin. Molecular modelling was used to evaluate physico-chemical differences between the drugs. Western blot analysis enabled to determine whether the marker of basal cells keratin 5 could be detected in the various tape strips.</p> <p>Results</p> <p>Application of penciclovir 1% cream yielded higher concentration of drug in the deeper layers of the epidermis as well as a higher drug flux through the skin. Molecular modelling showed two higher hydrophobic moieties for acyclovir. Presence of the basal cell marker keratin 5 was underscored in the deeper tape strips from the skin, giving evidence that both drugs can reach their target cells.</p> <p>Conclusion</p> <p>Penciclovir 1% cream has the tendency to facilitate the diffusion of the drug through the stratum corneum into the deeper epidermis layers, in which it could reach the target basal cells at effective therapeutical concentration. The small difference in the surface properties between both molecules might also contribute to favour the passage of penciclovir through the epidermis into the deeper basal cells.</p
Identification and Interpretation of Longitudinal Gene Expression Changes in Trauma
The relationship between leukocyte gene expression and recovery of respiratory function after injury may provide information on the etiology of multiple organ dysfunction.To find a list of genes for which expression after injury predicts respiratory recovery, and to identify which networks and pathways characterize these genes.Blood was sampled at 12 hours and at 1, 4, 7, 21 and 28 days from 147 patients who had been admitted to the hospital after blunt trauma. Leukocyte gene expression was measured using Affymetrix oligonucleotide arrays. A linear model, fit to each probe-set expression value, was used to impute the gene expression trajectory over the entire follow-up period. The proportional hazards model score test was used to calculate the statistical significance of each probe-set trajectory in predicting respiratory recovery. A list of genes was determined such that the expected proportion of false positive results was less than 10%. These genes were compared to the Gene Ontology for 'response to stimulus' and, using Ingenuity software, were mapped into networks and pathways.The median time to respiratory recovery was 6 days. There were 170 probe-sets representing 135 genes that were found to be related to respiratory recovery. These genes could be mapped to nine networks. Two known pathways that were activated were antigen processing and presentation and JAK-signaling.The examination of the relationship of gene expression over time with a patient's clinical course can provide information which may be useful in determining the mechanism of recovery or lack of recovery after severe injury
Overview of data-synthesis in systematic reviews of studies on outcome prediction models
Background: Many prognostic models have been developed. Different types of models, i.e. prognostic factor and outcome prediction studies, serve different purposes, which should be reflected in how the results are summarized in reviews. Therefore we set out to investigate how authors of reviews synthesize and report the results of primary outcome prediction studies. Methods: Outcome prediction reviews published in MEDLINE between October 2005 and March 2011 were eligible and 127 Systematic reviews with the aim to summarize outcome prediction studies written in English were identified for inclusion.
Characteristics of the reviews and the primary studies that were included were independently assessed by 2 review authors, using standardized forms. Results: After consensus meetings a total of 50 systematic reviews that met the inclusion criteria were included. The type of primary studies included (prognostic factor or outcome prediction) was unclear in two-thirds of the reviews. A minority of the reviews reported univariable or multivariable point estimates and measures of dispersion from the primary studies. Moreover, the variables considered for outcome prediction model development were often not reported, or were unclear. In most reviews there was no information about model performance. Quantitative analysis was performed in 10 reviews, and 49 reviews assessed the primary studies qualitatively. In both analyses types a range of different methods was used to present the results of the outcome prediction studies.
Conclusions: Different methods are applied to synthesize primary study results but quantitative analysis is rarely performed. The description of its objectives and of the primary studies is suboptimal and performance parameters of the outcome prediction models are rarely mentioned. The poor reporting and the wide variety of data synthesis strategies are prone to influence the conclusions of outcome prediction reviews. Therefore, there is much room for improvement in reviews of outcome prediction studies. (aut.ref.
Kinetochore fiber formation in animal somatic cells : dueling mechanisms come to a draw
Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Chromosoma 114 (2005): 310-318, doi:10.1007/s00412-005-0028-2.The attachment to and movement of a chromosome on the mitotic spindle is
mediated by the formation of a bundle of microtubules (MTs) that tethers the
kinetochore on the chromosome to a spindle pole. The origin of these “kinetochore
fibers” (K-fibers) has been investigated for over 125 years. As noted in 1944 by
Schrader, there are only three possible ways to form a K-fiber: either it a) grows from
the pole until it contacts the kinetochore; b) grows directly from the kinetochore; or c)
it forms as a result of an interaction between the pole and the chromosome. Since
Schrader’s time it has been firmly established that K-fibers in centrosome-containing
animal somatic cells form as kinetochores capture MTs growing from the spindle pole
(route a). It is now similarly clear that in cells lacking centrosomes, including plants
and many animal oocytes, K-fibers “self-assemble” from MTs generated by the
chromosomes (route b). Can animal somatic cells form K-fibers in the absence of
centrosomes by the “self-assembly” pathway? In 2000 the answer to this question
was shown to be a resounding “yes”. With this result, the next question became
whether the presence of a centrosome normally suppresses K-fiber self-assembly, or
if this route works concurrently with centrosome-mediated K-fiber formation. This
question, too, has recently been answered: observations on untreated live animal cells
expressing GFP-tagged tubulin clearly show that kinetochores can nucleate the
formation of their associated MTs in the presence of functional centrosomes. The
concurrent operation of these two “dueling” routes for forming K-fibers in animals
helps explain why the attachment of kinetochores and the maturation of K-fibers
occur as quickly as it does on all chromosomes within a cell.The work is sponsored by
NIH grant GMS 40198
- …