83 research outputs found

    Role of protein kinase C in angiotensin II-induced constriction of renal microvessels

    Get PDF
    Role of protein kinase C in angiotensin II-induced constriction of renal microvesselsBackgroundAlthough angiotensin II (Ang II) exerts its action through multiple vasomotor mechanisms, the contribution of phosphoinositol hydrolysis products to Ang II-induced renal vasoconstriction remains undetermined.MethodsThe role of protein kinase C (PKC) in Ang II-induced afferent (AFF) and efferent (EFF) arteriolar constriction was examined using the isolated perfused hydronephrotic rat kidney.ResultsAng II (0.3 nmol/L)-induced EFF constriction was refractory to inhibition of voltage-dependent calcium channels by pranidipine (1 μmol/L, 19 ± 2% reversal) but was completely reversed by a PKC inhibitor, chelerythrine (1 μmol/L, 96 ± 2% reversal). Furthermore, direct PKC activation by phorbol myristate acetate (PMA; 1 μmol/L) caused prominent EFF constriction, and this constriction was inhibited by manganese and free calcium medium. In contrast, Ang II-induced AFF constriction was completely abolished by pranidipine (98 ± 4% reversal) and was partially inhibited by chelerythrine (55 ± 3% reversal). Although PMA elicited marked AFF constriction, this constriction was insensitive to the calcium antagonist, but was totally inhibited by manganese or free calcium medium.ConclusionsPKC plays an obligatory role in Ang II-induced EFF constriction that requires extracellular calcium entry through nonselective cation channels. In contrast, in concert with our recent findings demonstrating a complete dilation by thapsigargin, Ang II-induced AFF constriction is mainly mediated by inositol trisphosphate (IP3) and voltage-dependent calcium channel pathways, but could not be attributed to the PKC-activated calcium entry pathway (for example, nonselective cation channels). Rather, Ang II-stimulated PKC may cross-talk to the IP3/voltage-dependent calcium channel pathway and could modulate the vasoconstrictor mechanism of the AFF. Thus, the role of PKC during Ang II stimulation differs in AFF and EFF, which may constitute segmental heterogeneity in the renal microvasculature

    Calcium antagonists and renal disease

    Get PDF

    Differential effect of T-type voltage-gated calcium channel disruption on renal plasma flow and glomerular filtration rate in vivo

    Get PDF
    Voltage-gated Ca2+ (Cav) channels play an essential role in the regulation of renal blood flow and glomerular filtration rate (GFR). Because T-type Cav channels are differentially expressed in pre- and postglomerular vessels, it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed with the use of two T-type Cav knockout (Cav3.1−/− and Cav3.2−/−) mouse strains. Continuous recordings of blood pressure and heart rate, para-aminohippurate clearance (renal plasma flow), and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild-type (WT) and Cav3.1−/− and Cav3.2−/− mice. The contractility of afferent and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav3.2−/− mice constricted significantly more in response to a depolarization compared with WT mice. GFR was increased in Cav3.2−/− mice with no significant changes in renal plasma flow, heart rate, and blood pressure. Cav3.1−/− mice had a higher renal plasma flow compared with WT mice, whereas GFR was indistinguishable from WT mice. No difference in the concentration response to K+ was observed in isolated afferent and efferent arterioles from Cav3.1−/− mice compared with WT mice. Heart rate was significantly lower in Cav3.1−/− mice compared with WT mice with no difference in blood pressure. T-type antagonists significantly inhibited the constriction of human intrarenal arteries in response to a small depolarization. In conclusion, Cav3.2 channels support dilatation of efferent arterioles and affect GFR, whereas Cav3.1 channels in vivo contribute to renal vascular resistance. It is suggested that endothelial and nerve localization of Cav3.2 and Cav3.1, respectively, may account for the observed effects. </jats:p

    Intra-parenchymal renal resistive index variation (IRRIV) describes renal functional reserve (RFR): Pilot study in healthy volunteers

    Get PDF
    An increase of glomerular filtration rate after protein load represents renal functional reserve (RFR) and is due to afferent arteriolar vasodilation. Lack of RFR may be a risk factor for acute kidney injury (AKI), but is cumbersome to measure. We sought to develop a non-invasive, bedside method that would indirectly measure RFR. Mechanical abdominal pressure, through compression of renal vessels, decreases blood flow and activates the auto-regulatory mechanism which can be measured by a fall in renal resistive index (RRI). The study aims at elucidating the relationship between intra-parenchymal renal resistive index variation (IRRIV) during abdominal pressure and RFR. In healthy volunteers, pressure was applied by a weight on the abdomen (fluid-bag 10% of subject's body weight) while RFR was measured through a protein loading test. We recorded RRI in an interlobular artery after application of pressure using ultrasound. The maximum percentage reduction of RRI from baseline was compared in the same subject to RFR. We enrolled 14 male and 16 female subjects (mean age 38 ± 14 years). Mean creatinine clearance was 106.2 ± 16.4 ml/min/1.73 m2. RFR ranged between -1.9 and 59.7 with a mean value of 28.9 ± 13.1 ml/min/1.73 m2. Mean baseline RRI was 0.61 ± 0.05, compared to 0.49 ± 0.06 during abdominal pressure; IRRIV was 19.6 ± 6.7%, ranging between 3.1% and 29.2%. Pearson's coefficient between RFR and IRRIV was 74.16% (p < 0.001). Our data show the correlation between IRRIV and RFR. Our results can lead to the development of a "stress test" for a rapid screen of RFR to establish renal susceptibility to different exposures and the consequent risk for AKI

    Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathies

    Get PDF
    Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathies.BackgroundThe ability of the kidney to maintain constancy of the glomerular filtration rate (GFR) over a wide range of renal perfusion pressures is termed autoregulation. Defective autoregulation of GFR has been demonstrated in diabetic nephropathy. Whether this is also the case in patients with nondiabetic nephropathies is not known.MethodsWe investigated the effect of acute lowering of blood pressure (BP) on GFR in 16 (8 males and 8 females) albuminuric subjects suffering from different nondiabetic nephropathies and in 14 (7 males and 7 females) controls matched with respect to sex, age, BP, and baseline GFR. The subjects received in random order an intravenous injection of either clonidine (150 to 225 μg) or saline (0.154 mmol/liter) within two weeks. We measured GFR ([51Cr]-EDTA), albuminuria (enzyme-linked immunosorbent assay; ELISA), and BP (Takeda TM-2420).ResultsClonidine induced similar reductions in mean arterial BP 17 (2) versus 19 (2) mm Hg [mean (SE)] in patients with nephropathy and in controls, respectively. GFR diminished in average from 89 (6) to 82 (5) ml/min/1.73 m2 (P < 0.05), and albuminuria declined from a geometric mean of 1218 (antilog SE 1.3) μg/min to 925 (1.3) in the patients with nondiabetic nephropathies (P < 0.05), whereas these variables remained unchanged in the control group. The mean difference between changes in GFR (95% confidence interval) between the nondiabetic macroalbuminuric and control subjects was 6.1 (-0.03 to 12.21) ml/min/1.73 m2 (P = 0.051).ConclusionOur study suggests that albuminuric patients with nondiabetic nephropathies frequently suffer from impaired autoregulation of GFR

    Rho-kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo

    Get PDF
    In addition to intracellular calcium, which activates myosin light chain (MLC) kinase, MLC phosphorylation and hence contraction is importantly regulated by MLC phosphatase (MLCP). Recent evidence suggests that distinct signaling cascades of vasoactive hormones interact with the Rho/Rho kinase (ROK) pathway, affecting the activity of MLCP. The present study measured the impact of ROK inhibition on vascular F-actin distribution and on vasoconstriction induced by activation/inhibition of distinct signaling pathways in vivo in the microcirculation of the split hydronephrotic rat kidney. Local application of the ROK inhibitors Y-27632 or HA-1077 induced marked dilation of pre- and postglomerular vessels. Activation of phospholipase C with the endothelin ET B agonist IRL 1620, inhibition of soluble guanylyl cyclase with 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), or inhibition of adenylyl cyclase with the adenosine A1 agonist N6-cyclopentyladenosine (CPA) reduced glomerular blood flow (GBF) by about 50% through vasoconstriction at different vascular levels. ROK inhibition with Y-27632 or HA-1077, but not protein kinase C inhibition with Ro 31-8220, blunted ET B-induced vasoconstriction. Furthermore, the reduction of GBF and of vascular diameters in response to ODQ or CPA were abolished by pretreatment with Y-27632. ROK inhibitors prevented constriction of preglomerular vessels and of efferent arterioles with equal effectiveness. Confocal microscopy demonstrated that Y-27632 did not change F-actin content and distribution in renal vessels. The results suggest that ROK inhibition might be considered as a potent treatment of renal vasoconstriction, because it interferes with constriction induced by distinct signaling pathways in renal vessels without affecting F-actin structure

    Acidosis potentiates endothelium-dependent vasorelaxation and gap junction communication in the superior mesenteric artery.

    Get PDF
    Extracellular pH is an important physiological determinant of vascular tone that is normally maintained within 7.35-7.45. Any change outside this range leads to severe pathological repercussions. We investigated the unknown effects of extracellular acidosis on relaxation in the superior mesenteric artery (SMA) of goat. SMA rings were employed to maintain isometric contractions at extracellular pH (p

    Superoxide Enhances Ca2+ Entry Through L-Type Channels in the Renal Afferent Arteriole

    Get PDF
    Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L ( P <0.001) and doubled the plateau response. These effects were abolished by tempol and nitroblue tetrazolium, but not by catalase, confirming actions of superoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor–mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor–mediated calcium mobilization. # Novelty and Significance {#article-title-68

    Potentiation of glucose-mediated glomerular injury by mechanical strain

    Get PDF
    1. The glomerular injury of diabetes is characterized by the progressive accumulation of extracellular matrix in the mesangial regions, ultimately resulting in glomerulosclerosis. 2. The excessive glomerular extracellular matrix formation associated with the haemodynamic alteration of diabetes is the result of mesangial mechanical strain. 3. The increased synthesis and deposition of extracellular matrix is augmented by the presence of high glucose concentrations. 4. Both mechanical strain and high glucose share many of the mechanisms mediating their metabolic effects, including the stimulation of prosclerotic growth factors. 5. Little is known about factors that may influence the long-term effects of mechanical strain, but the preservation of the F-actin cytoskeleton is likely an important modulator of the resulting injury
    • …
    corecore