3 research outputs found
Condensed-Phase Photochemistry in the Absence of Radiation Chemistry
We report post-irradiation photochemistry studies of condensed ammonia using photons of energies below condensed ammonia’s ionization threshold of ~ 9 eV. Hydrazine (N2H4), diazene (also known as diimide and diimine) (N2H2), triazane (N3H5), and one or more isomers of N3H3 are detected as photochemistry products during temperature-programmed desorption. Product yields increase monotonically with (1) photon fluence and (2) film thickness. In the studies reported herein, the energies of photons responsible for product formation are constrained to less than 7.4 eV. Previous post-irradiation photochemistry studies of condensed ammonia employed photons sufficiently energetic to ionize condensed ammonia and initiate radiation chemistry. Such studies typically involve ion-molecule reactions and electron-induced reactions in addition to photochemistry. Although photochemistry is cited as a dominant mechanism for the synthesis of prebiotic molecules in interstellar ices, to the best of our knowledge, ours is one of the first astrochemically-relevant studies that has found unambiguous evidence for condensed-phase chemical synthesis induced by photons in the absence of ionization
Intracellular calcium channels in protozoa
Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP(3)R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP(3)R. This ciliate has a large number of IP(3)- and ryanodine(Ry)-like receptors in 6 subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP(3)Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa