769 research outputs found

    The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF) localization

    Get PDF
    Background: Transcription initiation RNAs (tiRNAs) are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII) transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation. Results: In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF) binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A). Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21) transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis. Conclusions: Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization

    Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles

    Get PDF
    Over 95% of pancreatic adenocarcinomas (PDACs), as well as a large fraction of other tumor types, such as colorectal adenocarcinoma, are driven by KRAS activation. However, no direct RAS inhibitors exist for cancer therapy. Furthermore, the delivery of therapeutic agents of any kind to PDAC in particular has been hindered by the extensive desmoplasia and resultant drug delivery challenges that accompanies these tumors. Small interfering RNA (siRNA) is a promising modality for anti-neoplastic therapy due to its precision and wide range of potential therapeutic targets. Unfortunately, siRNA therapy is limited by low serum half-life, vulnerability to intracellular digestion, and transient therapeutic effect. We assessed the ability of a peptide based, oligonucleotide condensing, endosomolytic nanoparticle (NP) system to deliver siRNA to KRAS-driven cancers. We show that this peptide-based NP is avidly taken up by cancer cell

    Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.Published versio

    Lysosomal membrane permeabilization is an early event in sigma-2 receptor ligand mediated cell death in pancreatic cancer

    Get PDF
    BACKGROUND: Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. RESULTS: Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, Ξ±-tocopherol (Ξ±-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though Ξ±-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and Ξ±-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. CONCLUSIONS: Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and Ξ±-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways

    Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3

    Get PDF
    BACKGROUND: The targeted delivery of cancer therapeutics represents an ongoing challenge in the field of drug development. TRAIL is a promising cancer drug but its activity profile could benefit from a cancer-selective delivery mechanism, which would reduce potential side effects and increase treatment efficiencies. We recently developed the novel TRAIL-based drug platform TR3, a genetically fused trimer with the capacity for further molecular modifications such as the addition of tumor-directed targeting moieties. MUC16 (CA125) is a well characterized biomarker in several human malignancies including ovarian, pancreatic and breast cancer. Mesothelin is known to interact with MUC16 with high affinity. In order to deliver TR3 selectively to MUC16-expressing cancers, we investigated the possibility of targeted TR3 delivery employing the high affinity mesothelin/MUC16 ligand/receptor interaction. METHODS: Using genetic engineering, we designed the novel cancer drug Meso-TR3, a fusion protein between native mesothelin and TR3. The recombinant proteins were produced with mammalian HEK293T cells. Meso-TR3 was characterized for binding selectivity and killing efficacy against MUC16-positive cancer cells and controls that lack MUC16 expression. Drug efficacy experiments were performed in vitro and in vivo employing an intraperitoneal xenograft mouse model of ovarian cancer. RESULTS: Similar to soluble mesothelin itself, the strong MUC16 binding property was retained in the Meso-TR3 fusion protein. The high affinity ligand/receptor interaction was associated with a selective accumulation of the cancer drug on MUC16-expressing cancer targets and directly correlated with increased killing activity in vitro and in a xenograft mouse model of ovarian cancer. The relevance of the mesothelin/MUC16 interaction for attaching Meso-TR3 to the cancer cells was verified by competitive blocking experiments using soluble mesothelin. Mechanistic studies using soluble DR5-Fc and caspase blocking assays confirmed engagement of the extrinsic death receptor pathway. Compared to non-targeted TR3, Meso-TR3 displayed a much reduced killing potency on cells that lack MUC16. CONCLUSIONS: Soluble Meso-TR3 targets the cancer biomarker MUC16 in vitro and in vivo. Following attachment to the tumor via surface bound MUC16, Meso-TR3 acquires full activation with superior killing profiles compared to non-targeted TR3, while its bioactivity is substantially reduced on cells that lack the tumor marker. This prodrug phenomenon represents a highly desirable property because it has the potential to enhance cancer killing with fewer side-effects than non-targeted TRAIL-based therapeutics. Thus, further exploration of this novel fusion protein is warranted as a possible therapeutic for patients with MUC16-positive malignancies

    Detection of specific HPV subtypes responsible for the pathogenesis of condylomata acuminata.

    Get PDF
    BACKGROUND: The low-risk human papillomavirus types 6 and 11 are responsible for approximately 90% of anogenital wart cases, with approximately 190,000 new and recurrent cases reported in the UK in 2010. The UK has recently selected the quadrivalent HPV vaccine, which conveys protection against both HPV6 and HPV 11, as part of its immunisation programme for 2012 and it is expected that this will reduce disease burden in the UK. The aims of the study were to evaluate current strategies used for the monitoring of HPV infection in genital warts and to assess the suitability of laser-capture microdissection (LCM) as a technique to improve the understanding of the natural history of HPV types associated with genital wart lesions. METHODS: DNA and RNA were extracted from whole wart, surface swabs and LCM sections from 23 patients. HPV types present were determined using the Linear Array HPV Genotyping Test (Roche), with HPV DNA viral load and mRNA expression investigated using qPCR and qRT-PCR, respectively. RESULTS: Results indicated that swabbing the surface of warts does not accurately reflect potential causative HPV types present within a wart lesion, multiple HPV types being present on the surface of the wart that are absent in the lower layers of tissue isolated by LCM. Although it was shown that HPV DNA viral load does not directly correlate with HPV mRNA load, the presence of both DNA and mRNA from a single HPV type suggested a causative role in lesion development in 8/12 (66.6%) of patients analysed, with dual infections seen in 4/12 (33.3%) cases. HPV 6 and HPV 11 were present in more than 90% of the lesions examined. CONCLUSIONS: Surface swabbing of warts does not necessarily reflect the causative HPV types. HPV type specific DNA and mRNA loads do not correlate. HPV 6 and 11 were likely to be causally involved in over 90% of the lesions. Dual infections were also found, and further studies are required to determine the biological and clinical nature of dual/multiple infections and to establish the relationship of multiple HPV types within a single lesion.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sigma-2 receptors are over-expressed in proliferating cancer cells, making an attractive target for the targeted treatment of pancreatic cancer. In this study, we investigated the role of the novel sigma-2 receptor ligand SW43 to induce apoptosis and augment standard chemotherapy.</p> <p>Results</p> <p>The binding affinity for sigma-2 ligands is high in pancreas cancer, and they induce apoptosis with a rank order of SV119 < SW43 < SRM <it>in vitro</it>. Combining these compounds with gemcitabine further increased apoptosis and decreased viability. Our <it>in vivo </it>model showed that sigma-2 ligand treatment decreased tumor volume to the same extent as gemcitabine. However, SW43 combination treatment with gemcitabine was superior to the other compounds and resulted in stabilization of tumor volume during treatment, with minimal toxicities.</p> <p>Conclusions</p> <p>This study shows that the sigma-2 ligand SW43 has the greatest capacity to augment gemcitabine in a pre-clinical model of pancreas cancer and has provided us with the rationale to move this compound forward with clinical investigations for patients with pancreatic cancer.</p
    • …
    corecore