3 research outputs found

    An exceptionally weak Devonian geomagnetic field recorded by the Viluy Traps, Siberia

    Get PDF
    The detection of anomalous time averaged geomagnetic behaviour is crucial for understanding past magnetospheric shielding and inferring deep Earth evolution. Links have been suggested between geomagnetic field variation over timescales of tens to hundreds of millions of years and processes near the core–mantle boundary (CMB); however, this becomes difficult to establish prior to the Permo-Carboniferous Reversed Superchron (PCRS; 267–319 Ma) due to a lack of reliable data. To improve the record prior to the PCRS, we present multi-method produced paleointensity results from nines dykes and lava flows from the Viluy Traps, Siberia, emplaced during the Upper Devonian between 376.7 ± 1.7 Ma and 364.4 ± 1.7 Ma. These sites have previously been published as part of two paleodirectional studies, one of which produced the accepted 360 Ma pole for Siberia (Q factor 6). All of the sites produced very weak field values ranging from 4.3–14.9 Z A m2, in close agreement with other recent results from Mid-Lower Devonian Siberian samples. QPI criteria have been used to illustrate the reliability of these new, low paleointensities, confirming the period of weak field suggested by other recent Siberian work, and the period of implied increased incidence of solar wind radiation, extended into the Upper Devonian. Along with evidence for moderate-high reversal frequencies and a potentially significant multipolar component during the Devonian, these weak field values also suggest a significantly different pattern of heat flow across the CMB relative to more recent times

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using root s=8 TeV proton-proton collision data

    No full text
    A search for squarks and gluinos in final states containing high-pT jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in root s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb(-1). Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate ( single light-flavour) squarks. In mSUGRA/CMSSM models with tan beta = 30, A(0) = -2m(0) and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore