9 research outputs found

    Clinical and Economic Evaluation of a Proteomic Biomarker Preterm Birth Risk Predictor: Cost-Effectiveness Modeling of Prenatal Interventions Applied to Predicted Higher-Risk Pregnancies Within a Large and Diverse Cohort

    Get PDF
    Objectives: Preterm birth occurs in more than 10% of U.S. births and is the leading cause of U.S. neonatal deaths, with estimated annual costs exceeding $25 billion USD. Using real-world data, we modeled the potential clinical and economic utility of a prematurity-reduction program comprising screening in a racially and ethnically diverse population with a validated proteomic biomarker risk predictor, followed by case management with or without pharmacological treatment. Methods: The ACCORDANT microsimulation model used individual patient data from a prespecified, randomly selected sub-cohort (N = 847) of a multicenter, observational study of U.S. subjects receiving standard obstetric care with masked risk predictor assessment (TREETOP; NCT02787213). All subjects were included in three arms across 500 simulated trials: standard of care (SoC, control); risk predictor/case management comprising increased outreach, education and specialist care (RP-CM, active); and multimodal management (risk predictor/case management with pharmacological treatment) (RP-MM, active). In the active arms, only subjects stratified as higher risk by the predictor were modeled as receiving the intervention, whereas lower-risk subjects received standard care. Higher-risk subjects\u27 gestational ages at birth were shifted based on published efficacies, and dependent outcomes, calibrated using national datasets, were changed accordingly. Subjects otherwise retained their original TREETOP outcomes. Arms were compared using survival analysis for neonatal and maternal hospital length of stay, bootstrap intervals for neonatal cost, and Fisher\u27s exact test for neonatal morbidity/mortality (significance, p \u3c .05). Results: The model predicted improvements for all outcomes. RP-CM decreased neonatal and maternal hospital stay by 19% (p = .029) and 8.5% (p = .001), respectively; neonatal costs\u27 point estimate by 16% (p = .098); and moderate-to-severe neonatal morbidity/mortality by 29% (p = .025). RP-MM strengthened observed reductions and significance. Point estimates of benefit did not differ by race/ethnicity. Conclusions: Modeled evaluation of a biomarker-based test-and-treat strategy in a diverse population predicts clinically and economically meaningful improvements in neonatal and maternal outcomes

    Performance of a proteomic preterm delivery predictor in a large independent prospective cohort

    Get PDF
    Background Preterm birth remains a common and devastating complication of pregnancy. There remains a need for effective and accurate screening methods for preterm birth. Using a proteomic approach, we previously discovered and validated (Proteomic Assessment of Preterm Risk study, NCT01371019) a preterm birth predictor comprising a ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin. Objective To determine the performance of the ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin to predict both spontaneous and medically indicated very preterm births, in an independent cohort distinct from the one in which it was developed. Study Design This was a prospective observational study (Multicenter Assessment of a Spontaneous Preterm Birth Risk Predictor, NCT02787213) at 18 sites in the United States. Women had blood drawn at 170/7 to 216/7 weeks’ gestation. For confirmation, we planned to analyze a randomly selected subgroup of women having blood drawn between 191/7 and 206/7 weeks’ gestation, with the results of the remaining study participants blinded for future validation studies. Serum from participants was analyzed by mass spectrometry. Neonatal morbidity and mortality were analyzed using a composite score by a method from the PREGNANT trial (NCT00615550, Hassan et al). Scores of 0–3 reflect increasing numbers of morbidities or length of neonatal intensive care unit stay, and 4 represents perinatal mortality. Results A total of 5011 women were enrolled, with 847 included in this planned substudy analysis. There were 9 preterm birth cases at <320/7 weeks’ gestation and 838 noncases at ≥320/7 weeks’ gestation; 21 of 847 infants had neonatal composite morbidity and mortality index scores of ≥3, and 4 of 21 had a score of 4. The ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin ratio was substantially higher in both preterm births at <320/7 weeks’ gestation and there were more severe neonatal outcomes. The ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin ratio was significantly predictive of birth at <320/7 weeks’ gestation (area under the receiver operating characteristic curve, 0.71; 95% confidence interval, 0.55–0.87; P=.016). Stratification by body mass index, optimized in the previous validation study (22<body mass index≤37 kg/m2), resulted in an area under the receiver operating characteristic curve of 0.76 (95% confidence interval, 0.59–0.93; P=.023). The ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin ratio predicted neonatal outcomes with respective area under the receiver operating characteristic curve of 0.67 (95% confidence interval, 0.57–0.77; P=.005) and 0.78 (95% confidence interval, 0.63–0.93; P=.026) for neonatal composite morbidity and mortality scores of ≥3 or 4. In addition, the ratio of insulin-like growth factor-binding protein 4 to sex hormone binding globulin significantly stratified neonates with increased length of hospital stay (log rank P=.023). Conclusion We confirmed in an independent cohort the ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin ratio as a predictor of very preterm birth, with additional prediction of increased length of neonatal hospital stay and increased severity of adverse neonatal outcomes. Potential uses of the ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin predictor may be to risk stratify patients for implementation of preterm birth preventive strategies and direct patients to appropriate levels of care

    Diagnostic accuracy of fundal height and handheld ultrasound-measured abdominal circumference to screen for fetal growth abnormalities

    No full text
    OBJECTIVE—We sought to compare fundal height and handheld ultrasound–measured fetal abdominal circumference (HHAC) for the prediction of fetal growth restriction (FGR) or large for gestational age. STUDY DESIGN—This was a diagnostic accuracy study in nonanomalous singleton pregnancies between 24 and 40 weeks’ gestation. Patients underwent HHAC and fundal height measurement prior to formal growth ultrasound. FGR was defined as estimated fetal weight less than 10%, whereas large for gestational age was defined as estimated fetal weight greater than 90%. Sensitivity and specificity were calculated and compared using methods described elsewhere. RESULTS—There were 251 patients included in this study. HHAC had superior sensitivity and specificity for the detection of FGR (sensitivity, 100% vs 42.86%) and (specificity, 92.62% vs 85.24%). HHAC had higher specificity but lower sensitivity when screening for LGA (specificity, 85.66% vs 66.39%) and (sensitivity, 57.14% vs 71.43%). CONCLUSION—HHAC could prove to be a valuable screening tool in the detection of FGR. Further studies are needed in a larger population

    Clinical and economic evaluation of a proteomic biomarker preterm birth risk predictor: Cost-effectiveness modeling of prenatal interventions applied to predicted higher-risk pregnancies within a large and diverse cohort

    Get PDF
    AbstractObjectivesPreterm birth occurs in more than 10% of U.S. births and is the leading cause of U.S. neonatal deaths, with estimated annual costs exceeding 25 billion USD. Using real-world data, we modeled the potential clinical and economic utility of a prematurity-reduction program comprising screening in a racially and ethnically diverse population with a validated proteomic biomarker risk predictor, followed by case management with or without pharmacological treatment.MethodsThe ACCORDANT microsimulation model used individual patient data from a prespecified, randomly selected sub-cohort (N=847) of a multicenter, observational study of U.S. subjects receiving standard obstetric care with masked risk predictor assessment (TREETOP; NCT02787213). All subjects were included in three arms across 500 simulated trials: standard of care (SoC, control); risk predictor/case management comprising increased outreach, education and specialist care (RP-CM, active); and risk predictor/case management with pharmacological treatment (RP-MM, active). In the active arms, only subjects stratified as higher-risk by the predictor were modeled as receiving the intervention, whereas lower-risk subjects received standard care. Higher-risk subjects’ gestational ages at birth were shifted based on published efficacies, and dependent outcomes, calibrated using national datasets, were changed accordingly. Subjects otherwise retained their original TREETOP outcomes. Arms were compared using survival analysis for neonatal and maternal hospital length of stay, bootstrap intervals for neonatal cost, and Fisher’s exact test for neonatal morbidity/mortality (significance, p<0.05).ResultsThe model predicted improvements for all outcomes. RP-CM decreased neonatal and maternal hospital stay by 19% (p=0.029) and 8.5% (p=0.001), respectively; neonatal costs’ point estimate by 16% (p=0.098); and moderate-to-severe neonatal morbidity/mortality by 29% (p=0.025). RP-MM strengthened observed reductions and significance. Point estimates of benefit did not differ by race/ethnicity.ConclusionsModeled evaluation of a biomarker-based test-and-treat strategy in a diverse population predicts clinically and economically meaningful improvements in neonatal and maternal outcomes.Plain language summaryPreterm birth, defined as delivery before 37 weeks’ gestation, is the leading cause of illness and death in newborns. In the United States, more than 10% of infants is born prematurely, and this rate is substantially higher in lower-income, inner-city and Black populations. Prematurity associates with substantially increased risk of short- and long-term medical complications and can generate significant costs throughout the lives of affected children. Annual U.S. health care costs to manage short- and long-term prematurity complications are estimated to exceed 25 billion.Clinical interventions, including case management (increased patient outreach, education and specialist care), pharmacological treatment and their combination, can provide benefit to pregnancies at higher risk for preterm birth. Early and sensitive risk detection, however, remains a challenge.We have developed and validated a proteomic biomarker risk predictor for early identification of pregnancies at increased risk of preterm birth. The ACCORDANT study modeled treatments with real-world patient data from a racially and ethnically diverse U.S. population to compare the benefits of risk predictor testing plus clinical intervention for higher-risk pregnancies versus no testing and standard care. Measured outcomes included neonatal and maternal length of hospital stay, associated costs and neonatal morbidity and mortality. The model projected improved outcomes and reduced costs across all subjects, including ethnic and racial populations, when predicted higher-risk pregnancies were treated using case management with or without pharmacological treatment. The biomarker risk predictor shows high potential to be a clinically important component of risk stratification for pregnant women, leading to tangible gains in reducing the impact of preterm birth

    Break-induced replication is highly inaccurate

    Get PDF
    DNA must be synthesized for purposes of genome duplication and DNA repair. While the former is a highly accurate process, short-patch synthesis associated with repair of DNA damage is often error-prone. Break-induced replication (BIR) is a unique cellular process that mimics normal DNA replication in its processivity, rate, and capacity to duplicate hundreds of kilobases, but is initiated at double-strand breaks (DSBs) rather than at replication origins. Here we employed a series of frameshift reporters to measure mutagenesis associated with BIR in Saccharomyces cerevisiae. We demonstrate that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2,800-fold higher than during normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. We established that polymerase proofreading and mismatch repair correct BIR errors. Also, dNTP levels were elevated during BIR, and this contributed to BIR-related mutagenesis. We propose that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR, with Pol δ generating many of the mutagenic errors. We further postulate that activation of BIR in eukaryotic cells may significantly contribute to accumulation of mutations that fuel cancer and evolution

    Learning to Feel Like a Lawyer: Law Teachers, Sessional Teaching and Emotional Labour in Legal Education

    No full text
    corecore