11 research outputs found
Technical note: formation of airborne ice crystals in a wall independent reactor (WIR) under atmospheric conditions
Both, gas and particle scavenging contribute to the transport of organic compounds by ice crystals in the troposphere. To simulate these processes an experimental setup was developed to form airborne ice crystals under atmospheric conditions. Experiments were performed in a wall independent reactor (WIR) installed in a walk-in cold chamber maintained constantly at -20°C. Aerosol particles were added to the carrier gas of ambient air by an aerosol generator to allow heterogeneous ice formation. Temperature variations and hydrodynamic conditions of the WIR were investigated to determine the conditions for ice crystal formation and crystal growth by vapour deposition. In detail, the dependence of temperature variations from flow rate and temperature of the physical wall as well as temperature variations with an increasing reactor depth were studied. The conditions to provide a stable aerosol concentration in the carrier gas flow were also studied. The temperature distribution inside the reactor was strongly dependent on flow rate and physical wall temperature. At an inlet temperature of -20°C, a flow rate of 30 L•min exp -1 and a physical wall temperature of +5°C turned out to provide ideal conditions for ice formation. At these conditions a sharp and stable laminar down draft "jet stream" of cold air in the centre of the reactor was produced. Temperatures measured at the chamber outlet were kept well below the freezing point in the whole reactor depth of 1.0 m. Thus, melting did not affect ice formation and crystal growth. The maximum residence time for airborne ice crystals was calculated to at 40 s. Ice crystal growth rates increased also with increasing reactor depth. The maximum ice crystal growth rate was calculated at 2.82 mg• exp -1. Further, the removal efficiency of the cleaning device for aerosol particles was 99.8% after 10 min. A reliable particle supply was attained after a preliminary lead time of 15 min. Thus, the minimum lead time was determined at 25 min. Several test runs revealed that the WIR is suitable to perform experiments with airborne ice crystals
Saharan dust and ice nuclei over Central Europe
Surface measurements of aerosol and ice nuclei (IN) at a Central European mountain site during an episode of dust transport from the Sahara are presented. Ice nuclei were sampled by electrostatic precipitation on silicon wafers and were analyzed in an isothermal static vapor diffusion chamber. The transport of mineral dust is simulated by the Eulerian regional dust model DREAM. Ice nuclei and mineral dust are significantly correlated, in particular IN number concentration and aerosol surface area. The ice nucleating characteristics of the aerosol as analyzed with respect to temperature and supersaturation are similar during the dust episode than during the course of the year. This suggests that dust may be a main constituent of ice nucleating aerosols in Central Europe
Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume
We have sampled atmospheric ice nuclei (IN) and aerosol in Germany and in Israel during spring 2010. IN were analyzed by the static vapor diffusion chamber FRIDGE, as well as by electron microscopy. During the Eyjafjallajökull volcanic eruption of April 2010 we have measured the highest ice nucleus number concentrations (>600 l−1) in our record of 2 yr of daily IN measurements in central Germany. Even in Israel, located about 5000 km away from Iceland, IN were as high as otherwise only during desert dust storms. The fraction of aerosol activated as ice nuclei at −18 °C and 119% rhice and the corresponding area density of ice-active sites per aerosol surface were considerably higher than what we observed during an intense outbreak of Saharan dust over Europe in May 2008.
Pure volcanic ash accounts for at least 53–68% of the 239 individual ice nucleating particles that we collected in aerosol samples from the event and analyzed by electron microscopy. Volcanic ash samples that had been collected close to the eruption site were aerosolized in the laboratory and measured by FRIDGE. Our analysis confirms the relatively poor ice nucleating efficiency (at −18 °C and 119% ice-saturation) of such "fresh" volcanic ash, as it had recently been found by other workers. We find that both the fraction of the aerosol that is active as ice nuclei as well as the density of ice-active sites on the aerosol surface are three orders of magnitude larger in the samples collected from ambient air during the volcanic peaks than in the aerosolized samples from the ash collected close to the eruption site. From this we conclude that the ice-nucleating properties of volcanic ash may be altered substantially by aging and processing during long-range transport in the atmosphere, and that global volcanism deserves further attention as a potential source of atmospheric ice nuclei
COMPASS : comparative particle formation in the atmosphere using simulation chamber study techniques [Discussion paper]
The anthropogenic influence on climate and environment has increased strongly since industrialization about 150 yr ago. The consequences for the atmosphere became more and more apparent and nowadays affect our life quality on Earth progressively. Because of that it is very important to understand the atmospheric processes, on which these effects are based on, in detail. In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes such as particle formation online and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically with a residence time (xT (COMPASS 1) = 26.5 ± 0.3 min and xT (COMPASS 2) = 26.6 ± 0.4 min) at a typical flow rate of 15 L min−1 and a deposition rate (1.6 ± 0.8) × 10−5 s−1. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system a set of experiments was conducted at different conditions, i.e. urban and remote, enhancing ozone and terpenes as well as reducing sunlight. In the ozone enhanced ambient particle number and volume increased substantially at urban and remote conditions in a different strength. Solar radiation displayed a clear positive effect on particle number as well as terpene addition did at remote conditions. Therefore the system is a useful tool to investigate local precursors, the details of ambient particle formation at surface locations as well as future feedback processes
COMPASS : comparative particle formation in the atmosphere using portable simulation chamber study techniques
In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes, such as particle formation online, and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically, with a residence time xT (COMPASS1) = 26.5 ± 0.3 min and xT (COMPASS2) = 26.6 ± 0.4 min, at a typical flow rate of 15 L min−1 and a gas leak rate of (1.6 ± 0.8) × 10−5 s−1. Particle loss rates were found to be larger (due to the particles' stickiness to the chamber walls), with an extrapolated maximum of 1.8 × 10−3 s−1 at 1 nm, i.e. a hundredfold of the gas leak rate. This latter value is associated with sticky non-volatile gaseous compounds, too. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system, a set of experiments was conducted under different conditions, i.e. urban and remote, enhanced ozone and terpenes as well as reduced sunlight. In order to do so, an ozone lamp was applied to enhance ozone in one of two chambers; the measurement chamber was protected from radiation by a first-aid cover and volatile organic compounds (VOCs) were added using a small additional flow and a temperature-controlled oven. During the elevated ozone period, ambient particle number and volume increased substantially at urban and remote conditions, but by a different intensity. Protection of solar radiation displayed a clear negative effect on particle number, while terpene addition did cause a distinct daily pattern. E.g. adding β pinene particle number concentration rose by 13% maximum at noontime, while no significant effect was observable during darkness. Therefore, the system is a useful tool for investigating local precursors and the details of ambient particle formation at surface locations as well as potential future feedback processes
Emission of Volatile Sulfur Compounds from Spruce Trees
Spruce (Picea Abies L.) trees from the same clone were supplied with different, but low, amounts of plant available sulfate in the soil (9.7-18.1 milligrams per 100 grams of soil). Branches attached to the trees were enclosed in a dynamic gas exchange cuvette and analyzed for the emission of volatile sulfur compounds. Independent of the sulfate supply in the soil, H(2)S was the predominant reduced sulfur compound continuously emitted from the branches with high rates during the day and low rates in the night. In the light, as well as in the dark, the rates of H(2)S emission increased exponentially with increasing water vapor flux from the needles. Approximately 1 nanomole of H(2)S was found to be emitted per mole of water. When stomata were closed completely, only minute emission of H(2)S was observed. Apparently, H(2)S emission from the needles is highly dependent on stromatal aperture, and permeation through the cuticle is negligible. In several experiments, small amounts of dimethylsulfide and carbonylsulfide were also detected in a portion of the samples. However, SO(2) was the only sulfur compound consistently emitted from branches of spruce trees in addition to H(2)S. Emission of SO(2) mainly proceeded via an outburst starting before the beginning of the light period. The total amount of SO(2) emitted from the needles during this outburst was correlated with the plant available sulfate in the soil. The diurnal changes in sulfur metabolism that may result in an outburst of SO(2) are discussed
Characterization of aerosol particles produced by a skyscraper demolition by blasting
We present a study characterizing aerosol particles resulting from a skyscraper blasting. High mass concentrations with a maximum of 844.9 μg m-3 were present for a short time period of approximately 15 minutes. They result in a day mean of 32.6 μg m-3 compared to a 27.6 μg m-3 background not exceeding the 50 μg m-3 EU maximum permissive value. The increase in particle number concentration was less pronounced with a maximum concentration of 6.9 ⋅ 104 cm-3 compared to the local background value of 1.8 ⋅ 104 cm-3. The size-resolved number concentration shows a single mode of ultrafine particles at approximately 93 nm. The spatial distribution of deposited dust was investigated with Bergerhoff glass collection vessels, showing a decrease with distance. In the deposited dust samples the concentrations of twelve metals was determined, non of them exceeded the regional background concentrations significantly. The chemical composition of individual particles emitted by the demolition was studied by Scanning Electron Microscopy. They were mainly concrete and steel particles, with 60% calcium carbonates, 19% calcium sulfates, 19% silicates and 2% steel. In energy-dispersive X-Ray Spectroscopy, no fibers like asbestos were observed. Using a broad spectrum of instruments and methods, we obtain comprehensive characterization of the particles emitted by the demolition