4 research outputs found

    The epithelial–mesenchymal transition regulators Twist, Slug, and Snail are associated with aggressive tumour features and poor outcome in prostate cancer patients

    Get PDF
    The prognostic importance of transcription factors promoting epithelial–mesenchymal transition (EMT) and angiogenesis has not been well explored in prostate cancer patients with long follow-up, nor the interplay between these factors. The objective of this study was to assess the individual protein expression and co-expression of Twist, Slug (Snai2), Snail (Snai1), and hypoxia-inducible factor-1 alpha (Hif-1α) in prostate cancer in relation to EMT, angiogenesis, hypoxia, tumour features, disease recurrence, and patient survival. Immunohistochemical staining was performed on tissue microarray sections from 338 radical prostatectomies with long follow-up. In addition, 41 cases of prostatic hyperplasia, 33 non-skeletal metastases, 13 skeletal metastases, and 33 castration-resistant prostate carcinomas were included. Our findings were validated in external gene expression data sets. Twist was overexpressed in primary prostate cancer and markedly reduced in distant metastases (p < 0.0005). Strong expression of Twist and Slug was associated with Hif-1α in localised prostate cancer (p ≀ 0.001), and strong Twist was associated with Hif-1α in castration-resistant carcinomas (p = 0.044). Twist, Slug, and increased Snail at the tumour stromal border were associated with vascular factors (p ≀ 0.045). Each of the three EMT-regulating transcription factors were associated with aggressive tumour features and shorter time to recurrence and cancer-specific death. Notably, the co-expression of factors demonstrated an enhanced influence on outcome. In the subgroup of E-cadherinlow carcinomas, strong Slug was associated with shorter time to all end points and was an independent predictor of time to multiple end points, including cancer-specific death (hazard ratio 3.0, p = 0.041). To conclude, we demonstrate an important relation between EMT, hypoxia, and angiogenesis and a strong link between the investigated EMT regulators and aggressive tumour features and poor patient outcome in prostate cancer. Despite the retrospective nature of this long-term study, our findings could have a significant impact on the future treatment of prostate cancer, where tailored therapies might be directed simultaneously against epithelial–mesenchymal phenotypes, angiogenesis, and tumour hypoxia.publishedVersio

    FOXC2 expression and epithelial–mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer

    Get PDF
    Epithelial–mesenchymal transition (EMT) is important for tumour cell invasion and metastasis and is a feature of aggressive carcinomas. EMT is characterised by reduced E‐cadherin and increased N‐cadherin expression (EN‐switch), and increased expression of the EMT‐regulating transcription factor Forkhead box protein C2 (FOXC2) has been associated with progression and poor prognosis in various malignancies. FOXC2 was recently highlighted as a novel therapy target in prostate cancer, but survival data on FOXC2 are lacking. This study evaluates the expression of FOXC2, E‐cadherin and N‐cadherin in different prostatic tissues focusing on EMT, clinico‐pathological phenotype, recurrence and patient survival. Tissue microarray sections from 338 radical prostatectomies (1986–2007) with long and complete follow‐up, 33 castration resistant prostate cancers, 33 non‐skeletal metastases, 13 skeletal metastases and 41 prostatic hyperplasias were stained immunohistochemically for FOXC2, E‐cadherin and N‐cadherin. FOXC2 was strongly expressed in primary carcinomas, including castration resistant tumours and metastatic lesions as compared to benign prostatic hyperplasia. A hybrid epithelial–mesenchymal phenotype, with co‐expression of E‐cadherin and N‐cadherin, was found in the majority of skeletal metastases and in a substantial proportion of castration resistant tumours. In localised carcinomas, the EN‐switch was associated with adverse clinico‐pathological variables, such as extra‐prostatic extension, high pathological stage and lymph node infiltration. In univariate survival analyses of the clinically important, large subgroup of 199 patients with Gleason score 7, high FOXC2 expression and EN‐switching were significantly associated with shorter time to clinical recurrence, skeletal metastases and cancer specific death. In multivariate Cox' survival analysis, high FOXC2 and the EN‐switch, together with Gleason grade group (GG3 versus GG2), were independent predictors of time to these end‐points. High FOXC2 gene expression (mRNA) was also related to patient outcome, validating our immunohistochemical findings. FOXC2 and factors signifying EMT or its intermediate states may prove important as biomarkers for aggressive disease and are potential novel therapy targets in prostate cancer.publishedVersio

    The epithelial–mesenchymal transition regulators Twist, Slug, and Snail are associated with aggressive tumour features and poor outcome in prostate cancer patients

    No full text
    The prognostic importance of transcription factors promoting epithelial–mesenchymal transition (EMT) and angiogenesis has not been well explored in prostate cancer patients with long follow-up, nor the interplay between these factors. The objective of this study was to assess the individual protein expression and co-expression of Twist, Slug (Snai2), Snail (Snai1), and hypoxia-inducible factor-1 alpha (Hif-1α) in prostate cancer in relation to EMT, angiogenesis, hypoxia, tumour features, disease recurrence, and patient survival. Immunohistochemical staining was performed on tissue microarray sections from 338 radical prostatectomies with long follow-up. In addition, 41 cases of prostatic hyperplasia, 33 non-skeletal metastases, 13 skeletal metastases, and 33 castration-resistant prostate carcinomas were included. Our findings were validated in external gene expression data sets. Twist was overexpressed in primary prostate cancer and markedly reduced in distant metastases (p < 0.0005). Strong expression of Twist and Slug was associated with Hif-1α in localised prostate cancer (p ≀ 0.001), and strong Twist was associated with Hif-1α in castration-resistant carcinomas (p = 0.044). Twist, Slug, and increased Snail at the tumour stromal border were associated with vascular factors (p ≀ 0.045). Each of the three EMT-regulating transcription factors were associated with aggressive tumour features and shorter time to recurrence and cancer-specific death. Notably, the co-expression of factors demonstrated an enhanced influence on outcome. In the subgroup of E-cadherinlow carcinomas, strong Slug was associated with shorter time to all end points and was an independent predictor of time to multiple end points, including cancer-specific death (hazard ratio 3.0, p = 0.041). To conclude, we demonstrate an important relation between EMT, hypoxia, and angiogenesis and a strong link between the investigated EMT regulators and aggressive tumour features and poor patient outcome in prostate cancer. Despite the retrospective nature of this long-term study, our findings could have a significant impact on the future treatment of prostate cancer, where tailored therapies might be directed simultaneously against epithelial–mesenchymal phenotypes, angiogenesis, and tumour hypoxia

    FOXC2 expression and epithelial–mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer

    No full text
    Epithelial–mesenchymal transition (EMT) is important for tumour cell invasion and metastasis and is a feature of aggressive carcinomas. EMT is characterised by reduced E‐cadherin and increased N‐cadherin expression (EN‐switch), and increased expression of the EMT‐regulating transcription factor Forkhead box protein C2 (FOXC2) has been associated with progression and poor prognosis in various malignancies. FOXC2 was recently highlighted as a novel therapy target in prostate cancer, but survival data on FOXC2 are lacking. This study evaluates the expression of FOXC2, E‐cadherin and N‐cadherin in different prostatic tissues focusing on EMT, clinico‐pathological phenotype, recurrence and patient survival. Tissue microarray sections from 338 radical prostatectomies (1986–2007) with long and complete follow‐up, 33 castration resistant prostate cancers, 33 non‐skeletal metastases, 13 skeletal metastases and 41 prostatic hyperplasias were stained immunohistochemically for FOXC2, E‐cadherin and N‐cadherin. FOXC2 was strongly expressed in primary carcinomas, including castration resistant tumours and metastatic lesions as compared to benign prostatic hyperplasia. A hybrid epithelial–mesenchymal phenotype, with co‐expression of E‐cadherin and N‐cadherin, was found in the majority of skeletal metastases and in a substantial proportion of castration resistant tumours. In localised carcinomas, the EN‐switch was associated with adverse clinico‐pathological variables, such as extra‐prostatic extension, high pathological stage and lymph node infiltration. In univariate survival analyses of the clinically important, large subgroup of 199 patients with Gleason score 7, high FOXC2 expression and EN‐switching were significantly associated with shorter time to clinical recurrence, skeletal metastases and cancer specific death. In multivariate Cox' survival analysis, high FOXC2 and the EN‐switch, together with Gleason grade group (GG3 versus GG2), were independent predictors of time to these end‐points. High FOXC2 gene expression (mRNA) was also related to patient outcome, validating our immunohistochemical findings. FOXC2 and factors signifying EMT or its intermediate states may prove important as biomarkers for aggressive disease and are potential novel therapy targets in prostate cancer
    corecore