17 research outputs found

    Improving the Quality of Friction Stir Welds in Aluminium Alloys

    Get PDF
    The Stationary Shoulder Friction Stir Welding (SS-FSW) technique benefits from reduced heat input, improved mechanical properties and surface finish of the weld, avoiding the need for post weld processing. Coatings on the tool probe and the shoulder for welding of aggressive Aluminium alloys have rarely been successful. Such coatings must be well adherent and inert. In this study, coated tools were used for SS-FSW of AA6082-T6 alloy. Performance of a nanoscale multilayer TiAlN/VN coating deposited by High Power Impulse Magnetron Sputtering (HIPIMS) technology was compared with amorphous Diamond Like Carbon (a-C:H) by Plasma Assisted Chemical Vapour Deposition (PACVD), AlTiN deposited by arc evaporation and TiBCN along with TiB2 produced by Chemical Vapour Deposition (CVD) methods. The TiAlN/VN coating was found to have low affinity to aluminium, acceptable coefficient of friction and provided excellent weld quality by inhibiting intermixing between the tool and workpiece materials resulting in a significant reduction in tool wear

    First Approaches to Standard protocols and Reference Materials for the Assessment of Potential Hazards Associated with Nanomaterialss

    Get PDF
    All new technologies have an inherent risk, which is typically assessed alongside the development of applications of the technology. This is also the case for nanotechnology: a key concern in the case of engineered nanomaterials (ENMs) is that due to their very small size, NMs can reach areas such as the cell that are inaccessible to other materials, such as implants and drugs. As a result of their large surface area, NMs may be more reactive than other larger materials. The large physical and chemical variability of NMs, and the fact that small changes can have large consequences, mean that there is insufficient data on which to make safety or risk assessments at present. Thus, a widely supported scientific basis and sufficient high quality data upon which to base regulatory decisions are required urgently. NanoImpactNet (NIN) can support the development and dissemination of such data. This report presents the outcome of the discussions of 60 experts in the field of safety assessment of manufactured NMs from academia, industry, government and non-profit organizations on some of the critical issues pertaining to the development of standard protocols and reference materials for assessment of the potential hazards associated with ENMs. It should be noted here that there was a separate NIN workshop on determining the best metrics for assessing NP safety, and that this workshop was directed specifically to how best to standardise testing protocols and develop reference materials for human health assessment

    International standards for risk management in nanotechnology

    No full text

    Real-time monitoring of plasma synthesis of functional materials by high power impulse magnetron sputtering and other PVD processes: towards a physics-constrained digital twin

    Get PDF
    Plasma synthesis of thin films by physical vapour deposition (PVD) enables the creation of materials that drive significant innovations in modern life. High value manufacturing demand for tighter quality control and better resource utilisation can be met by a digital twin capable of modelling the deposition process in real time. Optical emission spectroscopy (OES) was combined with process parameters to monitor all stages of both High Power Impulse Magnetron Sputtering (HIPIMS) and conventional magnetron sputtering processes to provide a robust method of determining process repeatability and a reliable means of process control for quality assurance purposes. Strategies and physics-based models for the in-situ real-time monitoring of coating thickness, composition, crystallographic and morphological development for a CrAlYN/CrN nanoscale multilayer film were developed. Equivalents to the ion-to-neutral ratio and metal-to-nitrogen ratios at the substrates were derived from readily available parameters including the optical emission intensities of Cr I, N2 (C-B) and Ar I lines in combination with the plasma diffusivity coefficient obtained from the ratio of substrate and cathode current densities. These optically-derived equivalent parameters identified the deposition flux conditions which trigger the switch of dominant crystallographic texture from (111) to (220) observed in XRD pole figures and the development of coating morphology from faceted to dense for a range of magnetron magnetic field configurations. OES-based strategies were developed to monitor the progress of chamber evacuation, substrate cleaning and preventative chamber wall cleaning to support process optimisation and equipment utilisation. The work paves the way to implementation of machine learning protocols for monitoring and control of these and other processing activities, including coatings development and the use of alternative deposition techniques. The work provides essential elements for the creation of a digital twin of the PVD process to both monitor and predict process outcomes such as film thickness, texture and morphology in real time

    Development of isoform selective PI3-kinase inhibitors as pharmacological tools for elucidating the PI3K pathway

    No full text
    Using a parallel synthesis approach to target a non-conserved region of the PI3K catalytic domain a pan-PI3K inhibitor 1 was elaborated to provide alpha, delta and gamma isoform selective Class I PI3K inhibitors 21, 24, 26 and 27. The compounds had good cellular activity and were selective against protein kinases and other members of the PI3K superfamily including mTOR and DNA-PK

    Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices.

    No full text
    Abstract This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix

    Herrschaftslegitimation in den frühhellenistischen Dynastien

    No full text
    corecore