48 research outputs found
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
Resistance exercise induces increases in circulating interleukin-6 in type 1 diabetes individuals
Aims/hypothesis: Genetic pleiotropy may contribute to the clustering of obesity and metabolic conditions. We assessed whether genetic variants that are robustly associated with BMI and waist-to-hip ratio (WHR) also influence metabolic and cardiovascular traits, independently of obesity-related traits, in meta-analyses of up to 37,874 individuals from six European population-based studies. Methods: We examined associations of 32 BMI and 14 WHR loci, individually and combined in two genetic predisposition scores (GPSs), with glycaemic traits, blood lipids and BP, with and without adjusting for BMI and/or WHR. Results: We observed significant associations of BMI-increasing alleles at five BMI loci with lower levels of 2 h glucose (RBJ [also known as DNAJC27], QPTCL: effect sizes -0.068 and -0.107 SD, respectively), HDL-cholesterol (SLC39A8: -0.065 SD, MTCH2: -0.039 SD), and diastolic BP (SLC39A8: -0.069 SD), and higher and lower levels of LDL- and total cholesterol (QPTCL: 0.041 and 0.042 SDs, respectively, FLJ35779 [also known as POC5]: -0.042 and -0.041 SDs, respectively) (all p < 2.4 × 10-4), independent of BMI. The WHR-increasing alleles at two WHR loci were significantly associated with higher proinsulin (GRB14: 0.069 SD) and lower fasting glucose levels (CPEB4: -0.049 SD), independent of BMI and WHR. A higher GPS-BMI was associated with lower systolic BP (-0.005 SD), diastolic BP (-0.006 SD) and 2 h glucose (-0.013 SD), while a higher GPS-WHR was associated with lower HDL-cholesterol (-0.015 SD) and higher triacylglycerol levels (0.014 SD) (all p < 2.9 × 10 -3), independent of BMI and/or WHR. Conclusions/interpretation: These pleiotropic effects of obesity-susceptibility loci provide novel insights into mechanisms that link obesity with metabolic abnormalities. © 2013 Springer-Verlag Berlin Heidelberg