11 research outputs found

    The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography

    Get PDF
    Sporulation in Bacillus involves the induction of scores of genes in a temporally and spatially co-ordinated programme of cell development. Its initiation is under the control of an expanded two-component signal transduction system termed a phosphorelay. The master control element in the decision to sporulate is the response regulator, Spo0A, which comprises a receiver or phosphoacceptor domain and an effector or transcription activation domain. The receiver domain of Spo0A shares sequence similarity with numerous response regulators, and its structure has been determined in phosphorylated and unphosphorylated forms. However, the effector domain (C-Spo0A) has no detectable sequence similarity to any other protein, and this lack of structural information is an obstacle to understanding how DNA binding and transcription activation are controlled by phosphorylation in Spo0A. Here, we report the crystal structure of C-Spo0A from Bacillus stearothermophilus revealing a single alpha -helical domain comprising six alpha -helices in an unprecedented fold. The structure contains a helix-turn-helix as part of a three alpha -helical bundle reminiscent of the catabolite gene activator protein (CAP), suggesting a mechanism for DNA binding. The residues implicated in forming the sigma (A)-activating region clearly cluster in a flexible segment of the polypeptide on the opposite side of the structure from that predicted to interact with DNA. The structural results are discussed in the context of the rich array of existing mutational data

    Time series metagenomic sampling of the Thermopyles, Greece, geothermal springs reveals stable microbial communities dominated by novel sulfur-oxidizing chemoautotrophs

    No full text
    Geothermal springs are essentially unaffected by environmental conditions aboveground as they are continuously supplied with subsurface water with little variability in chemistry. Therefore, changes in their microbial community composition and function, especially over a long period, are expected to be limited but this assumption has not yet been rigorously tested. Toward closing this knowledge gap, we applied whole metagenome sequencing to 17 water samples collected between 2010 and 2016 from the Thermopyles sulfur-rich geothermal springs in central Greece. As revealed by 16S rRNA gene fragments recovered in the metagenomes, Epsilonproteobacteria-related operational taxonomic units (OTUs) dominated most samples and grouping of samples based on OTU abundances exhibited no apparent seasonal pattern. Similarities between samples regarding functional gene content were high, with all samples sharing >70% similarity in functional pathways. These community-wide patterns were further confirmed by analysis of metagenome-assembled genomes (MAGs), which showed that novel species and genera of the chemoautotrophic Campylobacterales order dominated the springs. These MAGs carried different pathways for thiosulfate or sulfide oxidation coupled to carbon fixation pathways. Overall, our study showed that even in the long term, functions of microbial communities in a moderately hot terrestrial spring remain stable, presumably driving the corresponding stability in community structure. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd

    Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient

    No full text
    Recent diversity studies have revealed that microbial communities of natural environments are dominated by species-like, sequence-discrete populations. However, how stable the sequence and gene-content diversity are within these populations and especially in highly dynamic lotic habitats remain unclear. Here we quantified the dynamics of intra-population diversity in samples spanning two years and five sites in the Kalamas River (Northwest Greece). A significant positive correlation was observed between higher intra-population sequence diversity and longer persistence over time, revealing that more diverse populations tended to represent more autochthonous (vs. allochthonous) community members. Assessment of intra-population gene-content changes caused by strain replacement or gene loss over time revealed different profiles with the majority of populations exhibiting gene-content changes close to 10% of the total genes, while one population exhibited ~21% change. The variable genes were enriched in hypothetical proteins and mobile elements, and thus, were probably functionally neutral or attributable to phage predation. A few notable exceptions to this pattern were also noted such as phototrophy-related proteins in summer vs. winter populations. Taken together, these results revealed that some freshwater genomes are remarkably dynamic, even across short time and spatial scales, and have implications for the bacterial species concept and microbial source tracking. © 2018, International Society for Microbial Ecology

    Investigations on the diagnosis and retroviral aetiology of renal neoplasia in budgerigars (Melopsittacus undulatus)

    Full text link
    The high susceptibility of budgerigars (Melopsittacus undulatus) to neoplasia, and specifically renal neoplasia, has often been reported. Further investigations led to a suspicion of a retrovirus as the causative agent for renal neoplasia in budgerigars, but definitive proof has yet to be found. In the present study, 32 budgerigars suspected of having renal neoplasia (based on the clinical presentation) were examined. The objectives were to investigate the use of different diagnostic methods for the ante-mortem diagnosis of this condition and to find more supporting evidence of a retroviral aetiology. The predominant clinical signs observed in budgerigars with renal neoplasia were lameness and absence of deep pain sensation of one leg. Alterations in haematology, plasma chemistry, and urine analyses could not pinpoint the cases of renal neoplasia. Contrast radiography of the intestinal tract proved to be diagnostically more useful compared with plain radiographic studies. Histology confirmed the renal neoplasia as adenocarcinoma. Investigations for virus identification included product-enhanced reverse transcriptase assay and enzyme-linked immunosorbent assay for the detection of avian leucosis virus group-specific antigen. Cell cultures and electron microscopy were performed on a limited number of patients. These investigations could find no presence of an exogenous, replicating retrovirus, neither could viral particles be detected by electron microscopy. Based on the current findings, it can be concluded that there is no evidence of retroviral involvement in the occurrence of renal neoplasia in budgerigars

    The digestive performance of mammalian herbivores: why big may not be that much better

    Full text link
    1. A traditional approach to the nutritional ecology of herbivores is that larger animals can tolerate a diet of lesser quality due to a higher digestive efficiency bestowed on them by comparatively long ingesta retention times and lower relative energy requirements. 2. There are important physiological disadvantages that larger animals must compensate for, namely a lower gut surface : gut volume ratio, larger ingesta particle size and greater losses of faecal bacterial material due to more fermentation. Compensating adaptations could include an increased surface enlargement in larger animals, increased absorption rates per unit of gut surface, and increased gut motility to enhance mixing of ingesta. 3. A lower surface : volume ratio, particularly in sacciform forestomach structures, could be a reason for the fact that methane production is of significant scope mainly in large herbivores and not in small herbivores with comparably long retention times; in the latter, the substrate for methanogenesis – the volatile fatty acids – could be absorbed faster due to a more favourable gut surface : volume ratio. 4. Existing data suggest that in herbivores, an increase in fibre digestibility is not necessarily accompanied by an increase in overall apparent dry matter digestibility. This indicates a comparative decrease of the apparent digestibility of non-fibre material, either due to a lesser utilization of non-fibre substrate or an increased loss of endogenous/bacterial substance. Quantitative research on these mechanisms is warranted in order to evaluate whether an increase in body size represents a net increase of digestive efficiency or just a shift of digestive focus
    corecore