232 research outputs found
Notions of agency in early literacy classrooms: assemblages and productive intersections
Agency and its role in the early literacy classroom has long been a topic for debate. While sociocultural accounts often portray the child as a cultural agent who negotiates their own participation in classroom culture and literacy learning, more recent framings draw attention from the individual subject, instead seeing agency as dispersed across people and materials. In this article I draw on my experiences of following children as they followed their interests in an early literacy classroom, drawing on the concepts of assemblage and people yet to come, as defined by Deleuze and Guattari and Spinoza’s common notion. I provide one illustrative account of moment-by-moment activity and suggest that in education settings it is useful to see activity as a direct and ongoing interplay of three dimensions: children’s moving bodies; the classroom; and its materials. I propose that children’s ongoing movements create possibilities for ‘doing’ and ‘being’ that flow across and between children. I argue that thinking with assemblage can draw attention to both the potentiality and the power dynamics inherent in the ongoing present and also counter preconceived notions of individual child agency and linear trajectories of literacy development, and the inequalities this these concepts can perpetuate within early education settings
Toxicity of wine effluents and assessment of a depuration system for their control: assay with tadpoles of Rhinella arenarum (BUFONIDAE)
We evaluated the toxicity of the winery effluent and the efficiency of a symbiotic depuration system by means an experiment with Rhinella arenarum tadpoles. The studied effluent was taken from warehouses during the cleaning season. These effluents subsequently subjected to the purification treatment under evaluation. The effluent samples differentiated into two treatment levels: “raw” where the effluent was evaluated with field conditions and “treated” where the effluent was previously filtered with the symbiotic depuration system. The results of the bioassays compared with the physicochemical parameters determined in the effluent samples. The lethal response had a clear-cut correspondence with the effluent quality assessed utilizing physicochemical parameters. In all cases, dilution of the samples resulted in a significant reduction of their toxicity. It concluded that (a) winery effluents could be harmful to tadpoles of R. arenarum, (b) the symbiotic purification system used to treat wine effluents it would produce a significant reduction in the contaminant levels of the effluent. However, this reduction in contaminant levels does not provide sufficient safety for the release of the effluents into the environment.Fil: Navas Romero, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Herrera Moratta, Mario Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Rodríguez, María Rosa. Universidad Nacional de San Juan. Facultad de Ingeniería; ArgentinaFil: Quiroga, Lorena Beatriz. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Echegaray, Marcelo Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Sanabria, Eduardo Alfredo. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin
Measurement of the CKM angle γ using<i> B</i><sup>±</sup> → <i>DK</i><sup>±</sup> with D → K <sub>S</sub> <sup>0</sup> π<sup>+</sup>π<sup>−</sup>, K <sub>S</sub> <sup>0</sup> K<sup>+</sup>K<sup>−</sup> decays
A binned Dalitz plot analysis of decays, with and , is used to perform a
measurement of the CP-violating observables and , which are
sensitive to the Cabibbo-Kobayashi-Maskawa angle . The analysis is
performed without assuming any decay model, through the use of information
on the strong-phase variation over the Dalitz plot from the CLEO collaboration.
Using a sample of proton-proton collision data collected with the LHCb
experiment in 2015 and 2016, and corresponding to an integrated luminosity of
2.0, the values of the CP violation parameters are found to
be , , , and . The first
uncertainty is statistical, the second is systematic, and the third is due to
the uncertainty on the strong-phase measurements. These values are used to
obtain \gamma = \left(87\,^{+11}_{-12}\right)^\circ, , and , where is the ratio
between the suppressed and favoured -decay amplitudes and is the
corresponding strong-interaction phase difference. This measurement is combined
with the result obtained using 2011 and 2012 data collected with the \lhcb
experiment, to give \gamma = \left(80\,^{+10}_{\,-9}\right)^\circ, , and .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2018-017.html.
Version 2 includes minor changes made during journal revie
In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p
In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.Peer Reviewe
In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
The IceCube Neutrino Observatory instruments
about 1 km3 of deep, glacial ice at the geographic South
Pole. It uses 5160 photomultipliers to detect Cherenkov
light emitted by charged relativistic particles. An unexpected
light propagation effect observed by the experiment is an
anisotropic attenuation, which is aligned with the local flow
direction of the ice. We examine birefringent light propaga-
tion through the polycrystalline ice microstructure as a pos-
sible explanation for this effect. The predictions of a first-
principles model developed for this purpose, in particular
curved light trajectories resulting from asymmetric diffusion,
provide a qualitatively good match to the main features of the
data. This in turn allows us to deduce ice crystal properties.
Since the wavelength of the detected light is short compared
to the crystal size, these crystal properties include not only
the crystal orientation fabric, but also the average crystal size
and shape, as a function of depth. By adding small empiri-
cal corrections to this first-principles model, a quantitatively
accurate description of the optical properties of the IceCube
glacial ice is obtained. In this paper, we present the exper-
imental signature of ice optical anisotropy observed in Ice-
Cube light-emitting diode (LED) calibration data, the theory
and parameterization of the birefringence effect, the fitting
procedures of these parameterizations to experimental data,
and the inferred crystal propertie
TXS 0506+056 with Updated IceCube Data
Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported
- …