251 research outputs found
Local majority dynamics on preferential attachment graphs
Suppose in a graph vertices can be either red or blue. Let be odd. At
each time step, each vertex in polls random neighbours and takes
the majority colour. If it doesn't have neighbours, it simply polls all of
them, or all less one if the degree of is even. We study this protocol on
the preferential attachment model of Albert and Barab\'asi, which gives rise to
a degree distribution that has roughly power-law ,
as well as generalisations which give exponents larger than . The setting is
as follows: Initially each vertex of is red independently with probability
, and is otherwise blue. We show that if is
sufficiently biased away from , then with high probability,
consensus is reached on the initial global majority within
steps. Here is the number of vertices and is the minimum of
and (or if is even), being the number of edges each new
vertex adds in the preferential attachment generative process. Additionally,
our analysis reduces the required bias of for graphs of a given degree
sequence studied by the first author (which includes, e.g., random regular
graphs)
The Power of Two Choices in Distributed Voting
Distributed voting is a fundamental topic in distributed computing. In pull
voting, in each step every vertex chooses a neighbour uniformly at random, and
adopts its opinion. The voting is completed when all vertices hold the same
opinion. On many graph classes including regular graphs, pull voting requires
expected steps to complete, even if initially there are only two
distinct opinions.
In this paper we consider a related process which we call two-sample voting:
every vertex chooses two random neighbours in each step. If the opinions of
these neighbours coincide, then the vertex revises its opinion according to the
chosen sample. Otherwise, it keeps its own opinion. We consider the performance
of this process in the case where two different opinions reside on vertices of
some (arbitrary) sets and , respectively. Here, is the
number of vertices of the graph.
We show that there is a constant such that if the initial imbalance
between the two opinions is ?, then with high probability two sample voting completes in a random
regular graph in steps and the initial majority opinion wins. We
also show the same performance for any regular graph, if where is the second largest eigenvalue of the transition
matrix. In the graphs we consider, standard pull voting requires
steps, and the minority can still win with probability .Comment: 22 page
Finding Connected Dense -Subgraphs
Given a connected graph on vertices and a positive integer ,
a subgraph of on vertices is called a -subgraph in . We design
combinatorial approximation algorithms for finding a connected -subgraph in
such that its density is at least a factor
of the density of the densest -subgraph
in (which is not necessarily connected). These particularly provide the
first non-trivial approximations for the densest connected -subgraph problem
on general graphs
On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols
In this work we focus on a natural class of population protocols whose
dynamics are modelled by the discrete version of Lotka-Volterra equations. In
such protocols, when an agent of type (species) interacts with an agent
of type (species) with as the initiator, then 's type becomes
with probability . In such an interaction, we think of as the
predator, as the prey, and the type of the prey is either converted to that
of the predator or stays as is. Such protocols capture the dynamics of some
opinion spreading models and generalize the well-known Rock-Paper-Scissors
discrete dynamics. We consider the pairwise interactions among agents that are
scheduled uniformly at random. We start by considering the convergence time and
show that any Lotka-Volterra-type protocol on an -agent population converges
to some absorbing state in time polynomial in , w.h.p., when any pair of
agents is allowed to interact. By contrast, when the interaction graph is a
star, even the Rock-Paper-Scissors protocol requires exponential time to
converge. We then study threshold effects exhibited by Lotka-Volterra-type
protocols with 3 and more species under interactions between any pair of
agents. We start by presenting a simple 4-type protocol in which the
probability difference of reaching the two possible absorbing states is
strongly amplified by the ratio of the initial populations of the two other
types, which are transient, but "control" convergence. We then prove that the
Rock-Paper-Scissors protocol reaches each of its three possible absorbing
states with almost equal probability, starting from any configuration
satisfying some sub-linear lower bound on the initial size of each species.
That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a
distributed system. Some of our techniques may be of independent value
Discrete Convex Functions on Graphs and Their Algorithmic Applications
The present article is an exposition of a theory of discrete convex functions
on certain graph structures, developed by the author in recent years. This
theory is a spin-off of discrete convex analysis by Murota, and is motivated by
combinatorial dualities in multiflow problems and the complexity classification
of facility location problems on graphs. We outline the theory and algorithmic
applications in combinatorial optimization problems
Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes
New algorithms for computing of asymptotic expansions for stationary
distributions of nonlinearly perturbed semi-Markov processes are presented. The
algorithms are based on special techniques of sequential phase space reduction,
which can be applied to processes with asymptotically coupled and uncoupled
finite phase spaces.Comment: 83 page
Order-randomized Laplacian mesh smoothing.
In this paper we compare three variants of the graph Laplacian smoothing. The first is the standard synchronous implementation, corresponding to multiplication by the graph Laplacian matrix. The second is a voter process inspired asynchronous implementation, assuming that every vertex is equipped with an independent exponential clock. The third is in-between the first two, with the vertices updated according to a random permutation of them. We review some well-known results on spectral graph theory and on voter processes, and we show that while the convergence of the synchronous Laplacian is graph dependent and, generally, does not converge on bipartite graphs, the asynchronous converges with high probability on all graphs. The differences in the properties of these three approaches are illustrated with examples including both regular grids and irregular meshes
- …