251 research outputs found

    Local majority dynamics on preferential attachment graphs

    Full text link
    Suppose in a graph GG vertices can be either red or blue. Let kk be odd. At each time step, each vertex vv in GG polls kk random neighbours and takes the majority colour. If it doesn't have kk neighbours, it simply polls all of them, or all less one if the degree of vv is even. We study this protocol on the preferential attachment model of Albert and Barab\'asi, which gives rise to a degree distribution that has roughly power-law P(x)1x3P(x) \sim \frac{1}{x^{3}}, as well as generalisations which give exponents larger than 33. The setting is as follows: Initially each vertex of GG is red independently with probability α<12\alpha < \frac{1}{2}, and is otherwise blue. We show that if α\alpha is sufficiently biased away from 12\frac{1}{2}, then with high probability, consensus is reached on the initial global majority within O(logdlogdt)O(\log_d \log_d t) steps. Here tt is the number of vertices and d5d \geq 5 is the minimum of kk and mm (or m1m-1 if mm is even), mm being the number of edges each new vertex adds in the preferential attachment generative process. Additionally, our analysis reduces the required bias of α\alpha for graphs of a given degree sequence studied by the first author (which includes, e.g., random regular graphs)

    The Power of Two Choices in Distributed Voting

    Full text link
    Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Θ(n)\Theta(n) expected steps to complete, even if initially there are only two distinct opinions. In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets AA and BB, respectively. Here, A+B=n|A| + |B| = n is the number of vertices of the graph. We show that there is a constant KK such that if the initial imbalance between the two opinions is ?ν0=(AB)/nK(1/d)+(d/n)\nu_0 = (|A| - |B|)/n \geq K \sqrt{(1/d) + (d/n)}, then with high probability two sample voting completes in a random dd regular graph in O(logn)O(\log n) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if ν0Kλ2\nu_0 \geq K \lambda_2 where λ2\lambda_2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n)\Omega(n) steps, and the minority can still win with probability B/n|B|/n.Comment: 22 page

    Finding Connected Dense kk-Subgraphs

    Full text link
    Given a connected graph GG on nn vertices and a positive integer knk\le n, a subgraph of GG on kk vertices is called a kk-subgraph in GG. We design combinatorial approximation algorithms for finding a connected kk-subgraph in GG such that its density is at least a factor Ω(max{n2/5,k2/n2})\Omega(\max\{n^{-2/5},k^2/n^2\}) of the density of the densest kk-subgraph in GG (which is not necessarily connected). These particularly provide the first non-trivial approximations for the densest connected kk-subgraph problem on general graphs

    On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols

    Get PDF
    In this work we focus on a natural class of population protocols whose dynamics are modelled by the discrete version of Lotka-Volterra equations. In such protocols, when an agent aa of type (species) ii interacts with an agent bb of type (species) jj with aa as the initiator, then bb's type becomes ii with probability P_ijP\_{ij}. In such an interaction, we think of aa as the predator, bb as the prey, and the type of the prey is either converted to that of the predator or stays as is. Such protocols capture the dynamics of some opinion spreading models and generalize the well-known Rock-Paper-Scissors discrete dynamics. We consider the pairwise interactions among agents that are scheduled uniformly at random. We start by considering the convergence time and show that any Lotka-Volterra-type protocol on an nn-agent population converges to some absorbing state in time polynomial in nn, w.h.p., when any pair of agents is allowed to interact. By contrast, when the interaction graph is a star, even the Rock-Paper-Scissors protocol requires exponential time to converge. We then study threshold effects exhibited by Lotka-Volterra-type protocols with 3 and more species under interactions between any pair of agents. We start by presenting a simple 4-type protocol in which the probability difference of reaching the two possible absorbing states is strongly amplified by the ratio of the initial populations of the two other types, which are transient, but "control" convergence. We then prove that the Rock-Paper-Scissors protocol reaches each of its three possible absorbing states with almost equal probability, starting from any configuration satisfying some sub-linear lower bound on the initial size of each species. That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a distributed system. Some of our techniques may be of independent value

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Order-randomized Laplacian mesh smoothing.

    Get PDF
    In this paper we compare three variants of the graph Laplacian smoothing. The first is the standard synchronous implementation, corresponding to multiplication by the graph Laplacian matrix. The second is a voter process inspired asynchronous implementation, assuming that every vertex is equipped with an independent exponential clock. The third is in-between the first two, with the vertices updated according to a random permutation of them. We review some well-known results on spectral graph theory and on voter processes, and we show that while the convergence of the synchronous Laplacian is graph dependent and, generally, does not converge on bipartite graphs, the asynchronous converges with high probability on all graphs. The differences in the properties of these three approaches are illustrated with examples including both regular grids and irregular meshes
    corecore