49 research outputs found

    Recovery of nitrogen cycling in riparian zones after stream restoration using δ15N along a 25-year chronosequence in northern Sweden

    Get PDF
    Swedish boreal streams were modified to transport timber by pushing boulders to stream sides, creating levees that disconnected streams from riparian areas. Many streams have since been restored and our goal was to understand how this affects riparian nitrogen (N) cycling.We compared the natural abundance of delta N-15 isotopes in foliage and roots of Filipendula ulmaria plus soils and litter along streams restored 2-25 years ago. We measured sources of N, potential immobilization of N, namely plant diversity and biomass, and the amount and sources of carbon (C) to determine if these were important for describing riparian N cycling.The delta N-15 of F. ulmaria foliage changed dramatically just after restoration compared to the channelized, disconnected state and then converged over the next 25 years with the steady-state reference.The disturbance and reconnection of the stream with the riparian zone during restoration created a short-term pulse of N availability and gaseous losses of N as a result of enhanced microbial processing of N. With increasing time since restoration, N availability appears to have decreased, and N sources changed to those derived from mycorrhizae, amino acids, or the humus layer, or there was enhanced N-use efficiency by older, more diverse plant communities

    Isotopic Branchpoints : Linkages and Efficiencies in Carbon and Water Budgets

    Get PDF
    Forests pass water and carbon through while converting portions to streamflow, soil organic matter, wood production, and other ecosystem services. The efficiencies of these transfers are but poorly quantified. New theory and new instruments have made it possible to use stable isotope composition to provide this quantification of efficiencies wherever there is a measurable difference between the branches of a branchpoint. We present a linked conceptual model that relies on isotopes of hydrogen, carbon, and oxygen to describe these branchpoints along the pathway from precipitation to soil and biomass carbon sequestration and illustrate how it can be tested and generalized. Plain Language Summary The way a forest works can be described in terms of carbon and water budgets, which describe the ways that carbon and water flow through the forest. The paths of such flows are frequently branched and the branches are often different in their stable isotope composition. This means that stable isotopes can be used to describe the branching events. We present isotopic methods of quantifying several such events, then link them in a chain that begins with the evaporation of water and ends with biomass production.Non peer reviewe

    How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought

    Get PDF
    Trees in northern latitude ecosystems are projected to experience increasing drought stress as a result of rising air temperatures and changes in precipitation patterns in northern latitude ecosystems. However, most drought-related studies on high-latitude boreal forests (>50 degrees N) have been conducted in North America, with few studies quantifying the response in European and Eurasian boreal forests. Here, we tested how daily whole-tree transpiration (Q, Liters day(-1)) and Q normalized for mean daytime vapor pressure deficit (Q(DZ), Liters day(-1) kPa(-1)) were affected by the historic 2018 drought in Europe. More specifically, we examined how tree species, size, and topographic position affected drought response in high-latitude mature boreal forest trees. We monitored 30 Pinus sylvestris (pine) and 30 Picea abies (spruce) trees distributed across a topographic gradient in northern Sweden. In general, pine showed a greater Q(DZ) control compared to spruce during periods of severe drought (standardized precipitation-evapotranspiration index: SPEI <-1.5), suggesting that the latter are more sensitive to drought. Overall, Q(DZ) reductions (using non-drought Q(DZ) as reference) were less pronounced in larger trees during severe drought, but there was a species-specific pattern: Q(DZ) reductions were greater in pine trees at high elevations and greater in spruce trees at lower elevations. Despite lower Q(DZ) during severe drought, drought spells were interspersed with small precipitation events and overcast conditions, and Q(DZ) returned to pre-drought conditions relatively quickly. This study highlights unique species-specific responses to drought, which are additionally driven by a codependent interaction among tree size, relative topographic position, and unique regional climate conditions.Peer reviewe

    Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils

    Get PDF
    Background Knowledge of biological and climatic controls in terrestrial nitrogen (N) cycling within and across ecosystems is central to understanding global patterns of key ecosystem processes. The ratios of 15N:14N in plants and soils have been used as indirect indices of N cycling parameters, yet our understanding of controls over N isotope ratios in plants and soils is still developing. Scope In this review, we provide background on the main processes that affect plant and soil N isotope ratios. In a similar manner to partitioning the roles of state factors and interactive controls in determining ecosystem traits, we review N isotopes patterns in plants and soils across a number of proximal factors that influence ecosystem properties as well as mechanisms that affect these patterns. Lastly, some remaining questions that would improve our understanding of N isotopes in terrestrial ecosystems are highlighted. Conclusion Compared to a decade ago, the global patterns of plant and soil N isotope ratios are more resolved. Additionally, we better understand how plant and soil N isotope ratios are affected by such factors as mycorrhizal fungi, climate, and microbial processing. A comprehensive understanding of the N cycle that ascribes different degrees of isotopic fractionation for each step under different conditions is closer to being realized, but a number of process-level questions still remain

    Soil Carbon Pool and Carbon Fluxes Estimation in 26 Years after Selective Logging Tropical Forest at Sabah, Malaysia

    Get PDF
    The soil carbon pool holds an enormous amount of carbon, making it the largest reservoir in the terrestrial ecosystem. However, there is growing concern that unsustainable logging methods damage the soil ecosystem, thus triggering the release of soil carbon into the atmosphere hence contributing to ongoing climate change. This study uses a replicated (n = 4) logging experiment to examine the impact of supervised logging with climber cutting (SLCC) and conventional logging (CL) on basic soil characteristics, litter input to soils, soil carbon pools, and soil respiration in a mixed dipterocarp forest 26 years after logging. This study found that there was no significant difference observed in the soil physicochemical properties and total carbon pools between the logging treatments and the virgin forest. Soil carbon pools dominated the total carbon pools, and the highest mean value was recorded in SLCC (87.95 +/- 13.67 Mg C ha(-1)). Conventional logging had a lower mean value (71.17 +/- 12.09 Mg C ha(-1)) than virgin forest (83.20 +/- 11.97 Mg C ha(-1)). SLCC also shows a higher value of soil respiration rate (161.75 +/- 21.67 mg C m(-2) h(-1)) than CL (140.54 +/- 12.54 mg C m(-2) h(-1)). These findings highlight the importance of accurate quantification of the effect of different logging methods on the forest's carbon pools

    Soil physico-chemical properties in a selectively logged forest at Gunung Rara Forest Reserve, Sabah, Malaysia

    Get PDF
    The tropical rainforest has various lists of crucial functions in forest productivity. However, unsustainable logging method has led to the decline of soil fertility in the forest. This study aimed to investigate the impacts of different logging methods on the soil’s physical and chemical properties at Gunung Rara Forest Reserve, Sabah, Malaysia. The logging treatments were supervised logging with climber cutting (SLCC) and conventional logging (CL), and a virgin forest (VF) was used as the control plot. The size for each plot was one hectare and each was replicated into four plots making the total plots 12. Soil sampling was done at four depths (0–10 cm, 10–20 cm, 20–50 cm, and 50–100 cm) for soil analysis and bulk density. The finding shows that the soil properties in the treatment plots were not significantly different from the untreated plot. The soil organic matter, total nitrogen, and total carbon decreased with soil depths. The soil in all study areas was found acidic, ranging from 4.12 to 4.46. The soil textures were clay, sandy clay loam, and sandy loam. The SLCC plot recorded a higher mean of soil organic matter (5.93–7.40%), total phosphorus (0.08–0.09 meq/100 g), and cation exchange capacity (5.69–7.05 meq/100 g) compared to other plots. This study highlights the importance of analysing the impact of different logging methods on the soil’s physicochemical properties

    First report of the ectomycorrhizal status of boletes on the Northern Yucatan Peninsula, Mexico determined using isotopic methods

    Get PDF
    Despite their prominent role for tree growth, few studies have examined the occurrence of ectomycorrhizal fungi in lowland, seasonally dry tropical forests (SDTF). Although fruiting bodies of boletes have been observed in a dry tropical forest on the Northern Yucatan Peninsula, Mexico, their occurrence is rare and their mycorrhizal status is uncertain. To determine the trophic status (mycorrhizal vs. saprotrophic) of these boletes, fruiting bodies were collected and isotopically compared to known saprotrophic fungi, foliage, and soil from the same site. Mean δ15N and δ13C values differed significantly between boletes and saprotrophic fungi, with boletes 8.0‰ enriched and 2.5‰ depleted in 15N and 13C, respectively relative to saprotrophic fungi. Foliage was depleted in 13C relative to both boletes and saprotrophic fungi. Foliar δ15N values, on the other hand, were similar to saprotrophic fungi, yet were considerably lower relative to bolete fruiting bodies. Results from this study provide the first isotopic evidence of ectomycorrhizal fungi in lowland SDTF and emphasize the need for further research to better understand the diversity and ecological importance of ectomycorrhizal fungi in these forested ecosystems

    Tropical and Boreal Forest Atmosphere Interactions: A Review

    Get PDF
    This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiala in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests

    Tropical and Boreal Forest Atmosphere Interactions : A Review

    Get PDF
    This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiala in Finland. The review is complemented by short-term observations from networks and large experiments. The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction. Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink. It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.Peer reviewe

    Tropical and Boreal Forest Atmosphere Interactions : A Review

    Get PDF
    This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiala in Finland. The review is complemented by short-term observations from networks and large experiments. The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction. Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink. It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.Peer reviewe
    corecore