34 research outputs found
Pantoprazole Does not Affect Serum Trough Levels of Tacrolimus and Everolimus in Liver Transplant Recipients
Background: Liver transplant recipients are frequently treated with proton pump inhibitors. Drug interactions have been described especially with respect to omeprazole. Due to the lower binding capacity of pantoprazole to CYP2C19 this drug became preferred and became the most used proton pump inhibitor in Germany. The data on the influence of pantoprazole on immunosuppressive drugs in liver transplant recipients a very scarce.Methods: The authors performed a single center analysis in liver transplant recipients on the effect of pantoprazole on the serum trough levels of different immunosuppressants. The trough levels were compared over a period of 1 year before and after start or stop of a continuous oral co-administration of 40 mg pantoprazole once daily.Results: The serum trough levels of tacrolimus (n = 30), everolimus (n = 7), or sirolimus (n = 3) remain constant during an observation period of at least 1 year before and after co-administration of pantoprazole. None of the included patients needed a change of dosage of the observed immunosuppressants during the observation period.Conclusions: The oral co-administration of pantoprazole is safe in immunosuppressed liver transplant recipients according to the serum trough levels of tacrolimus, everolimus, and sirolimus. This analysis provides first data on the influence of pantoprazole on immunosuppressive drugs in liver transplant recipients
Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer
Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance
Stromal Features of the Primary Tumor Are Not Prognostic in Genetically Engineered Mice of Pancreatic Cancer
The KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mouse model is frequently employed for preclinical therapeutic testing, in particular in regard to antistromal therapies. Here, we investigate the prognostic implications of histopathological features that may guide preclinical trial design. Pancreatic tumor tissue from n = 46 KPC mice was quantitatively analyzed using immunohistochemistry and co-immunofluorescence for proliferation (Ki67), mitotic rate (phospho-Histone 3, PHH3), apoptosis (cleaved caspase-3, CC3), collagen content, secreted protein acidic and rich in cysteine (SPARC), hyaluronic acid (HA), and α-smooth muscle actin (α-SMA). Furthermore, mean vessel density (MVD), mean lumen area (MLA), grading, activated stroma index (ASI), and fibroblast-proliferation rate (α-SMA/Ki67) were assessed. Univariate analysis using the Kaplan–Meier estimator and Cox regression model for continuous variables did not show association between survival and any of the analyzed parameters. Spearman correlation demonstrated that desmoplasia was inversely correlated with differentiated tumor grade (ρ = −0.84). Ki67 and PHH3 synergized as proliferation markers (ρ = 0.54), while SPARC expression was positively correlated with HA content (ρ = 0.37). MVD and MLA were correlated with each other (ρ = 0.31), while MLA positively correlated with CC3 (ρ = 0.45). Additionally, increased MVD was correlated with increased fibroblast proliferation rate (α-SMA + Ki67; ρ = 0.36). Our pilot study provides evidence that individual histopathological parameters of the primary tumor of KPC mice are not associated with survival, and may hint at the importance of systemic tumor-related effects such as cachexia
Supplementary Figure 6 from Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Abrogation of SHH signaling fuels hypersprouting in human and murine PDAC explants.</p
Supplementary Table 10 - 13 from Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Supplementary Table 10: Antibodies for IHC and IF.Overview of antibodies used for stainings in human PDAC or KPC-derived tissues.Supplementary Table 11: Primer sequences for qRT-PCR.Primers for qRT-PCR-based quantification of ChIP and mRNA samples.Supplementary Table 12: Freezer dryer settings for sponge production.Specific settings for optimal sponge production.Supplementary Table 13: Explant media composition.List of reagents used for human PDAC and murine explants.</p
Supplementary Table 8 from Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Lymphoid network.Regulatory network for PDAC-associated lymphoid cells, listing the inferred transcriptional targets (Target) for each regulatory protein (Regulator). Association weight (AW) and association mode (AM) are scores to quantify strength/direction of interaction. Sign indicates directionality of the interaction (1 = transactivating, -1 = transrepressing).</p
Supplementary Figure 3 from Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Explant cellular populations.</p
Supplementary Figure 8 from Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Single cell analysis of paracrine cascades in KPC PDAC.</p
Supplementary Figure 4 from Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Explant cellular populations throughout culture.</p