142 research outputs found
Equilibrium and tearing stability of thin current layers in magnetic arcades
The MHD equilibrium of a thin, force-free current layer in a magnetic arcade is solved analytically. Various approximations are made in order to achieve a lowest order description that is physically relevant as well as mathematically tractable: The arcade is assumed to emanate from feet that are well localized, the current emanates from a localized sheet within the feet and is relatively weak. The resulting expressions for B (sup arrow) are relatively simple and natural flux coordinates are identifiable. The stability of such a current sheet to resistive filamentation is then investigated
Magnetic field twist driven by remote convective motions: Characteristics and twist rates
It is generally believed that convective motions below the solar photosphere induce a twist in the coronal magnetic field as a result of frozen-in physics. A question of interest is how much twist can one expect from a persistent convective motion, given the fact that dissipative effects will eventually figure. This question is examined by considering a model problem: two conducting plates, with finite resistivity, are set in sheared motion and forced at constant relative speed. A resistive plasma is between the plates and an initially vertical magnetic field connects the plates. The time rate of tilt experienced by the field is obtained as a function of Hartmann number and the resistivity ratio. Both analytical and numerical approaches are considered
Soliton self-modulation of the turbulence amplitude and plasma rotation
The space-uniform amplitude envelope of the Ion Temperature Gradient driven
turbulence is unstable to small perturbations and evolves to nonuniform,
soliton-like modulated profiles. The induced poloidal asymmetry of the
transport fluxes can generate spontaneous poloidal spin-up of the tokamak
plasma.Comment: Latex file, 66 pages, 24 postscript figures included. New section on
rotation five new figures, comparison with magnetic pumping dampin
Condensation of microturbulence-generated shear flows into global modes
In full flux-surface computer studies of tokamak edge turbulence, a spectrum
of shear flows is found to control the turbulence level and not just the
conventional (0,0)-mode flows. Flux tube domains too small for the large
poloidal scale lengths of the continuous spectrum tend to overestimate the
flows, and thus underestimate the transport. It is shown analytically and
numerically that under certain conditions dominant (0,0)-mode flows independent
of the domain size develop, essentially through Bose-Einstein condensation of
the shear flows.Comment: 5 pages, 4 figure
- …